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Abstract—A regular perturbation analysis is presented for three laminar natural convection flows in
liquids with temperature dependent viscosity: a freely-rising plane plume, the flow above a horizontal line
source on an adiabatic surface (a plane wall plume) and the flow adjacent to a vertical uniform flux
surface. While these flows have well-known power-law similarity solutions when the fluid viscosity is
taken to be constant, they are non-similar when the viscosity is considered to be a function of
temperature. A single similar flow, that adjacent to a vertical isothermal surface, is also analyzed for
comparison in order to estimate the extent of validity of the perturbation analysis. The formulation used
here provides a unified treatment of variable viscosity effects on these four flows. With the exception of
water, the major temperature variation of the fluid properties of common liquids is seen to be in the
absolute viscosity. This has been previously recognized and utilized for other flows and is the basis for the
applicability of the present analysis. Computed first-order perturbation quantities are presented for all
four flows. Several interesting variable viscosity trends on flow and transport are suggested by the present
results. These modifications to a constant viscosity formulation are seen to be significant even within the
necessarily limited range of a first-order perturbation analysis. Heat transfer results for the isothermal
and uniform heat flux surfaces are in very close agreement with the corresponding data and correlations
of previous investigations. The present results also place some previous conclusions regarding plume
flows in clearer perspective.

NOMENCLATURE Greek symbols
ap, coefficients in equation (6b); B, coefficient of thermal expansion;
b,c,d, defined in equations (5a)-(5d); i i I du
Cps specific heat of fluid; e viscosity parameter, = ;l dr f([o a
1, non-dimensional stream function; ! du
Gr,, local Grashof number, 75 viscosity parameter, = (— d—) {to—tylos
_ 2,3 1.2, o at
—gﬁp X {{00{:}0}!'#}'9 . i . ! T
Gr¥, local flux Grashof number, = gBq"x*/kv?; £ps pert\ijrbatxor? quc]u}x]tlt)‘i, = {1‘0;3% it
g, acceleration due to gravity; . ngn~] 1:neqs1on§ ) o&zqgt.a Istance;
H, heat-transfer parameter, H absolu e v1sF031t? ot ful S
N 14, v, kinematic viscosity of fluid;
- (Nux)m/(crx)x : 5 densit .
H*  flux heat-transfer parameter, P . .
= (Nu,), . /(Gr¥)li5; a, Prandtl number of fluid:
xia x e > . e .
h, local heat-transfer coefficient; 2 t_ex():pe{rat;x(r{e exrces)§ ratio,
k, thermal conductivity of fluid ; - ) 0 Tal
. . v, stream function ;
M, momentum flux in the x direction;
. S T, shear stress.
m, mass flow rate per unit width of surface;
]Ai A, ;ieﬁl;e;iI in eiquatlorgi (Sa);i(S/(i); Subscripts
u,, local Nusselt number, = hx/k;
N * h ‘ CM, refers to results from Carey and Mollendorf
s eat-transfer parameter, [31]:
_ y / syid. - ’
= V2ANu/(Gr ), F,  refers to results from Fujii et af. [22];
Q; tOt‘;l he:lt cofr;vec}ed downstream ; 1, refers to conditions at film temperature:
g,  surlace heat Hux; m, refers to conditions at mean temperature
£ temperature; , w, refers to conditions at the wall:
t,. reference temperature, = t,—1/4{t;—1,.); 0, refers to conditions at x = 0:
ty,  film temperature, = (1o +1,)/2: o, refers to conditions in the ambient fluid ;
u, vert.lcal velocity component ; 0, refers to conditions when y¥ = 0.
v, horizontal velocity component;;
X, vertical coordinate ;
v, horizontal coordinate.
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INTRODUCTION

DEePARTURES from constant-fluid-property descrip-
tions of convective transport at moderate and high
temperature differences have been evident for some
time. A brief discussion of variable property treat-
ment in forced-flow is presented here first, since
many of the physical considerations are similar to
those of natural convection. For flow in internal
passages, the radial temperature distribution is
known to modify the velocity profile through
temperature—viscosity coupling. As a result, higher
viscosity near the surface tends to reduce transport.
The viscosity of gases generally increases with
temperature, whereas liquid viscosities decrease with
temperature. Therefore, for heating a fluid, the effect
of temperature-dependent viscosity is to decrease
transport in gases and to increasc transport in
liquids. The opposite occurs for cooling a fluid.
Sieder and Tate [1] proposed to correlate this effect
with the ratio of the absolute viscosities at the
average (inlet and exit) and wall temperatures raised
to the 0.14 power, i.e. (u,/u,)"'* Using this factor,
all other fluid properties were evaluated at ¢,,.

The carliest analysis of variable property effects
was done by Schuh [2] for the external forced-flow
of air and oils over a flat plate. A later analysis by
Cohen and Reshotko [3] considered a lincar
variation of viscosity as well as compressibility effects
for various pressure gradients in the external flow of
an ideal gas. Later, Seban [4] extended the Prandtl
number and viscosity ratio ranges used by Schuh
[2]. Poots and Raggett [5] and [6] have analyzed
the external forced-flow of water over a flat plate,
rotating disk and circular cylinder. For each con-
figuration. the effects of variable density. viscosity,
specific heat and thermal conductivity were included.

Both measurement and analysis were done by Test
[7] and Hwang and Hong [8] to assess the effect of
variable viscosity on heat transfer in SAE60 oil in a
tube and ethylene glycol in a rectangular duct.
Hwang and Hong [8] considered both isothermal
and constant heat flux boundary conditions, and
used an inverse variation of viscosity with tempera-
ture, as did Schuh [2] and Seban [4], and attributed
variable property effects to a 209, increase in Nusselt
number. Buoyancy (or mixed convection) effects
have been considered theoretically. along with fluid
property variation and blowing or suction, for the
external flow of water over two-dimensional car-
tesian or axisymmetric bodies by Kaup and Smith
[9]. Natural convection effects on forced-flow in a
horizontal tube were considered, both analytically
and experimentally, by Shannon and Depew [10].
They approximated the viscosity of ethylene glycol
as an exponential variation with temperature. Com-
bined forced and free convection in horizontal tubes
with temperature-dependent viscosity has more re-
cently been analyzed using an integral technique by
Hong and Bergles [11]. For large values of their
viscosity-variation parameter, — (1/u)( /) At heat-
transfer predictions are 50%, above those of a

constant viscosity analysis. Their results are in good
agreement with their corresponding measurements in
water and ethylene glycol.

Very recently, Ockendon and Ockendon |12]
presented an analysis for suddenly heated or cooled
channel flow of a Newtonian fluid with the viscosity
either algebraically or exponentially dependent on
temperature. Pearson [ 13] has also analyzed channel
flow of high viscosity fluids when internal heat
generation is very large. He presents a similarity
solution for steady plane developing channel flow of
a fluid whose viscosity varies exponentially with
temperature. He also discusses unsteady flow, steady
flow in pipes, radial disk flow. and flow in channels
of varying depth.

Certain common features of formulation will be
seen between the above discussion of variable
property effects in forced-flow and the following
discussion related to natural convection flows. For
example, viscosity variation alone is the dominant
variable property effect for many .moderate and high
Prandtl number liquids other than water, but the
inclusion of additional property variations Is neces-
sary for gases and water.

The earliest known theoretical treatment of vari-
able property effects in natural convection is the
perturbation analysis of Huara [14] for air. The
solution is applicable for small values of the
perturbation parameter, ¢, = (to—1, ), . sce later
notation. Sparrow [15] also considered natural
convection with variable properties and variable wall
temperaturc. At about the same time, Tanaev [16]
investigated natural convection in a gas with
variable viscosity, as did Plapp [17] for oils. A later
investigation by Sparrow and Gregg [ (8], analyzed
natural convection from an isothermal vertical
surface for variable-property gases and liquid mer-
cury. Their results indicated that the film tempera-
ture is adequate for most applications and they
suggested a more accurate reference temperature for
more extreme conditions. Using a successive ap-
proach method. Hara [19] extended the range of
applicability of his previous perturbation solution to
ey = 2and 4.

The non-ideal-gas behavior of steam was in-
corporated in an analysis of natural convection from
a vertical isothermal surface by Minkowycz and
Sparrow [20]. They found a reference temperature
coefficient of 0.46 instead of 0.38 found by Sparrow
and Gregg [18]. Note that using the average (or
film} reference temperature corresponds to a coef-
ficient of 0.50.

Variable property effects in water and carbon
dioxide at supercritical pressures was analyzed by
Nishikawa and Ito [21], also for natural convection
adjacent to a vertical isothermal surface.

Two methods of correlating the effects of variable
properties on heat transfer for natural convection
from vertical surfaces in liquids were examined by
Fujii et al. [22]. They presented extensive experi-
mental data for natural convection [rom a vertical



Variable viscosity effects in several natural convection flows 97

cylinder with isothermal and uniform heat flux
boundary conditions in laminar, transition and
turbulent flow. Test data was taken in water, spindle
oil and Mobiltherm 600 oil. They concluded that
since the boundary-layer thickness was small com-
pared to the radius of the cylinder, the heat-transfer
coefficients should be within 1.3% of those for the
corresponding flat plate problem. The first method of
correlating the data consisted of using the constant
property correlations for Nusselt number and
evaluating all properties at a reference temperature,
t,=tq—1/4(ty—1t,). They noted that this choice of
reference temperature agrees with that suggested by
solutions of the laminar natural convection
boundary-layer equations presented in two previous
studies: the approximate solutions of Fujii [23] for
ethylene glycol and the numerical solutions of Akagi
[24] for mineral oils. The second method that Fujii
et al. [22] used to correlate their data in oils was first
proposed by Akagi [24] and applies only to liquids
for which viscosity variation is dominant. This
amounts to a Nusselt number correction factor
which consists of the ratio of kinematic viscosities at
the surface and ambient temperatures raised to the
0.21 power. The resulting correlation has the form,
Nug(vo/v, )2 oo (Gr Pr)'*, with all other fluid
properties evaluated at the ambient fluid tempera-
ture, t,. For the uniform heat flux surface they
transformed the correlation to incorporate a flux
Grashof number and the resultant exponent of the
viscosity ratio became 0.17. Excellent agreement was
found between their data and both methods of
correlation.

The similarity analysis of Piau [25] also treated
variable property effects in natural convection from
vertical surfaces in moderate and high Prandtl
number liquids. He points out that the main
property variations in water at moderate tempera-
ture levels are in viscosity, u, and the volumetric
coefficient of thermal expansion, f, and that for
higher Prandtl number liquids, the variation of § is
often negligible. The formulation considers a general
variation of u and p with temperature, but calcu-
lations are performed for a linear variation. Results
are presented for water (6, = 7.03, 5.45 and 3.59) for
two temperature differences and three temperature
levels, and for the limiting situation of ¢, oc. In a
follow-up paper, Piau [26], includes the effect of
thermal stratification of the ambient in an analysis
which also includes variable u and f effects.
Corresponding measurements of the temperature
field in stratified water are in good agreement with
theoretical results, and an attempt is made to
correlate transition to turbulence with parameters
characterizing property variation.

Barrow and Sitharamarao [27] examined the
effect of variable f on natural convection in water,
but ignore the temperature dependence of absolute
viscosity, which is known to be important. Brown
[28] used an integral method with variable § and p
but also overlooked the important variation of u.
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Natural convection from a vertical, uniform-heat-
flux surface was investigated experimentally and
using an integral method by Ito et al. [29]. The
temperature variation of all relevant fluid properties
was included for carbon dioxide near its critical
point and for spindle oil and Mobiltherm oil at
atmospheric pressure. Their results for Mobiltherm
oil agree well with the constant property results
evaluated at the reference temperature suggested by
Fujii et al. [22], t, = to—1/4(1; — t, ). Measurements
by Booker [30] in a horizontal layer of high Prandtl
number oil, experiencing a 300-fold viscosity vari-
ation, indicate only a 12°%, reduction in heat
transfer below that of a corresponding constant
viscosity fluid.

Carey and Mollendorf [31] have shown the
mathematical forms of viscosity variation with
temperature which result in similarity solutions for
laminar natural convection from a vertical isother-
mal surface in liquids with temperature dependent
viscosity. For the simple case of a linear variation of
viscosity with temperature they presented numerical
results for a range of their viscosity parameter,

from —1.6 to +1.6 for values of film Prandtl
number, o, from 1 to 1000.

Considerably less work has been done concerning
variable property effects on constant buoyancy
natural convection flows: the plane plume above a
horizontal line heat source and the flow above a
horizontal line heat source on a vertical adiabatic
surface. Spalding and Cruddace [32] evaluated the
effect of temperature-dependent . viscosity on the
laminar plane plume flow above a line heat source in
a fluid of large Prandtl number. They concluded that
the temperature dependence of the viscosity has no
influence on the flow because, for large Prandtl
number, the region of non-uniform temperature is
thin and concentrated in a region of small shear
stress. Liburdy and Faeth [33] treated variable
property effects for both the laminar plane plume
and the horizontal line heat source on an adiabatic
surface by assuming pu=p, p, and pk=p_k_.
Through the use of a Howarth transformation they
were able to reduce the variable property problem to
the equivalent constant property similarity solution
equations obtained by Fujii er al. [34]. While the
form they assumed for the property variations may
be somewhat applicable to gases, it is not character-
istic of most liquids.

Carey and Mollendorf [31] have shown that, if the
viscosity is expanded as a Taylor series in tempera-
ture about the film temperature, a similarity solution
may be obtained for vertical laminar natural con-
vection from an isothermal surface. A necessary
condition for similarity is that ry—r, be independent
of x, which essentially requires that t, be constant in
an unstratified medium. Three vertical boundary-
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layer flows of considerable practical importance
where ¢, is variable in the downstream direction are:
a uniform heat flux surface, an adiabatic surface with
a concentrated energy source along the leading edge
and a plane plume arising from a concentrated
horizontal thermal source. Here we use a per-
turbation method to analyze the effect of tempera-
ture dependent viscosity on the above three vertical
plane flows. The perturbation parameter is

where 7§ is evaluated at the film temperature; and
the centerline temperature difference, (tq—1,)p. s
that which the flow would have assuming constant
viscosity evaluated at the film temperature. Since 1,
and therefore ;¥ vary with x, these will be non-
similar solutions. However, the only difference in the
formulations for the three flows are the boundary
conditions and the coefficients in the differential
equations. The formulation, given in the next section,
considers a general power-law dependence of tem-
perature difference with downstream distance, i.c.
to—1, = Nx". The three flow configurations cor-
respond to particular values of n.

Computed first-order perturbation quantities are
presented for these three non-similar flows for
Prandtl numbers ranging from 5 to 500. In addition,
first order perturbation quantities for the isothermal
surface condition have been calculated for Prandtl
numbers of 10 and 100. The results for the
isothermal surface are compared with the similarity
solution of Carey and Mollendorf [31] to determine
the range of ;¥ for which they are valid. The use of
this formulation makes it possible to analyze the
effect of temperature dependent viscosity on these
flows in a unified manner.

FORMULATION

The present formulation assumes steady, two-
dimensional (plane), vertical natural convection flow
and incorporates the usual Oberbeck-Boussinesq
and boundary-layer assumptions. The absolute vis-
cosity, u. is taken to be variable in the
force-momentum balance while the fluid volumetric
coefficient of thermal expansion, f, specific heat, ¢,
and thermal conductivity, k, are assumed to be
constant. Viscous dissipation, motion pressure and
volumetric energy source effects are neglected. This
results in the following governing equations:

[ETIEE
R —~=0 {la)
O Oy
cu du 1 ¢ éu
v L (n ) +ybit—t,)  (1b)
Ox v op oy &y
ot ok on
H4 %—’”‘Fl’ P {]C)
[GAs oy pe, Oy

where u and ¢ are the vertical and horizontal velocity
components respectively and g is taken to be in the
negative x direction for heated flows. The tempera-
ture of the quiescent ambient fluid. ¢, , at large values
of vy is taken to be constant. Except for y. the fluid
properties in {1b}and (Ic) arc viewed as constants to
be cvaluated at some reference temperature.

The absolute viscosity, 4, is expanded in a Taylor
series about its value at the film temperature:

d’u 1(dzﬂ‘ )
=, . —p M 2 5
U #j+(kdt),-([ t)+3 e )/‘(r L A S {2)

This particular form is chosen to allow definition of
the stream function based on the absolute viscosity
at the film temperature, ;. For liquids, all transport
properties vary with temperature. However, for
many liquids, (petroleum oils, glycerin, glycols,
silicone fluids, and some molten salts, for ecxample)
the percent variation of absolute viscosity with
temperature is much greater than that of the other
properties. Under these conditions, an analysis
incorporating the above assumptions describes the
momentum and thermal transport more accurately
than the usual assumption of constant properties
evaluated at some reference temperature. For some
liquids, properties other than u vary strongly with
temperature. In particular, water and methyl alcohol
exhibit strong variation of both u and . Further-
more, the assumptions made here are not justified for
gases since the variation of other gas properties with
temperature cannot be neglected.
The viscous shear term in {1b) can be expanded

1é duy  pPu Vdp 0t lu
e Ba ‘:"): IR R P e (3)
p '\ v, p oyt pdefyv iy
and, after substitution, the momentum equation
becomes

~ - ~2 ~, A
fu cu (cfu Pdu o Cu
U +v—=gplt—1,) —%—; R
0x ‘v p vt opde Gy oy

The following generalizations are introduced to
obtain the equations in terms of the generalized
stream and temperature functions f and ¢:

nix, y) = ybix), ¥ = t e(x) fin x) (5a)
[)
t—t, ,
Pl x) = (} I"-) {to— 1, )o = d(x} = Nx"(5b}
(eI PN 4]
Gppite 1,0 1
c{x) =4xb(x) = 4{%{.1)‘2:,% tado (5¢)
. Hy .
Gr. |'? 1 du
=4 I oyx=le =] (tg—t, )0 (5
[ 4 i (,U dl)}( 0 11)0( d)

where (t;—1,), i1s the downstream temperature
difference {along the x axis) which would result for
7% = 0. Similarly, the term (1/u,)(du/dt), is evaluated
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at the film temperature of the flow, t, = (o +1,)0/2,
when y¥ = 0.

In terms of the variables defined in (5), the
expansion for viscosity may be written as

o= [T+ — D +a, [ ()] (¢ —3)°

+as[ o -1 +..] (6a)
where the a, are properties of the fluid given by
n—1 dn | d n
L= (S (% (6)
n! de" /. \dt /,

Since (to—t,,)o must be non-zero, y} can be zero
only if (du/dt), =0. For virtually all Newtonian
liquids, the variation of viscosity with temperature is
monotonic, i.e. no extrema arise, and du/dt can be
zero only if g is a constant, whereupon the higher
order derivatives are also zero. Therefore, if
du/dt = 0, then y¥ =0, the coefficients a,(y%)" =0
and u is a constant, u,. Hence the expansion (6a) is
well behaved for du/dt — 0.

Expansions for the stream and temperature func-
tions f(n, x) and ¢ (n, x) are postulated as

SoyP) = fin,x) = foln)+75(x) 11 (n)

+[/]' X)]Zfz(")+ (7)
b 7F) = o, x) = o) +75(x)d (1)

+[F00Pd2 M+ (8)

Here we consider only first order terms and therefore
the expansions for g, f and ¢ are truncated after
terms of order y%. In (6a) this amounts to a linear
variation of viscosity with temperature as a first-
order approximation. However, greater accuracy
may be obtained for a specific fluid by retaining
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higher order terms in (6a), (7) and (&). If the
variation of viscosity with temperature of the fluid is
known, the additional parameters a, may be de-
termined from (6b).

Substituting (6a), (7) and (8) into (l¢) and (4) with
the generalizations in (5), the equations for f,, ¢, f;
and ¢, are then determined for any value of n.

= 2n+2) () + (n+3) ot +do=0 (9a)
o+ o, [B+ngyfo—4nfod,] =0 (9b)
= @8n+4)fo fi +(Sn+3) fo'f +(n+3) o fi’
o+ (o= 1/2)+Pofe =0 (10a)
P\ +a[B+n)d) fo—8nfod, —dnf{¢,
+ ¢, fi(3+51)] =0. (10b)

The fluid properties ;1 and y¥ are to be evaluated
at the film temperature, ¢, = (t0+tT)0/2, and using
the temperature difference, (ro—1,),. that the flow
would have if the viscosity were constant (yf = 0).
These are related to the actual film temperature, ¢,
and temperature difference, 1,—1,, as: to—1, = (1,
—t,)o¢ and t;, =t +3(tg—t, )o[¢(0)—1]. The film
Prandtl number, o, is defined as o,=pc,/k, where
gy is the previously defined film viscosity and c,
and k are evaluated at some chosen reference tempera-
ture, t,. For the isothermal condition, ;¥ will be seen
to be identical to y, as defined by Carey and Mollen-
dorf [31]. The corresponding Grashof number, Gr_,
is based on (t,—1t_ ), Gr, is related to the actual
physical local Grashof number by Gri=Gr.¢(0)
The boundary conditions specified below are
consistent with this formulation.

The relevant boundary conditions for the four flows to be analyzed here are as follows, where the primes

indicate differentiation with respect to #.

(a) Isothermal surface with horizontal leading edge, n = 0

P(0,x) = f(0,x) = f(0,x) = f'(oc, x) = 1 =0, x) = (11a)
L ~¢o(0) = ¢o(0) = f3(0) = f,(0) = fo w)=0 (11b)
$1(0) = ¢, (oc) = f1(0) = £,(0) = f{(e0) = 0. {11c)
(b) Uniform-flux surface with a horizontal leading edge, n = 1/5
¢, x) = f(0,x) = f(0,x) = f{ec,x) =0 (12a)
1—d>o(0)=%(00)=f6(0)=fb(0)=fo'(00)=0 (12b)
¢1(0) = ¢((x) = f{(0) = fi(0) = fi(c (12¢)
(c) An adiabatic surface with a concentrated heat source along the horizontal leading edge, n = — 3/5.
¢'(0,x) = f'(0,x) = f(0,x) = f'(ox,x) =0 (13a)
1=60(0) = ¢5(0) = f5(0) = fo(0) = fo(x) =0 (13b)
$1(0) = ¢ (0) = f1(0) = £,(0) = f{(0) =0 (13c)
(d) A plane plume rising from a horizontal thermal source, n = — 3/5.
¢'(0.x) = f(0.x) = f"(0,x) = f'(o0, x) = 0 (14a)
1—=¢6(0) = ¢5(0) = fo(0) = f5'(0) = fo(c) =0 (14b)
1(0) = ¢1(c) = £1(0) = f{"(0) = f{(c0) =0 (t4c)
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For the isothermal condition, n =0, and since
¢,(0) = 0, the temperature at y = 0 is not altered by
varying y* Consequently, the film temperature,
tp=(to+t,.)2, and 1,—t, are not altered by
varying y¥. Therefore, for the isothermal condition,
7§ 1s equal to v, = (1), (dp/dt) (1 —1,,) as defined
by Carey and Mollendorf [31]. The values of n
shown above for the other three flow conditions are
determined by calculating the value of Q(x), the total
heat convected in the flow at any downstream
location x.

Qx) = j pe (t—t, Judy
0
= e ed J‘ Gf dy o X3 (15)
0

This must increase linearly with x for the uniform
heat flux surface condition, (b), and be independent
of x for the adiabatic flows, (c) and (d). Therefore,

n, =0 (16a)
n, =1/5 (16b)
n,=n,= —3/5. (16c)

Including the first order terms in f and ¢ for ;% # 0,
Q(x) 1s

0w =y | duticn
4]
+v.’ff (%.f‘ﬁcfzf&)dn} (17)
0

For the uniform flux condition, (b), and the
adiabatic flows, (c) and (d), integration of the first
order energy equation (10b) shows that the second
integral in (17) is zero. This is required to ensure that
additional x dependence is not added to Q(x)
through 7¥. Q(x) may therefore be written as

"~

Q(x) = e ed ]y where I, = J bofudn. (18)
0
The mass flow per unit width of surface, 1, becomes

= J pudy
0

=HUyC J Jrdn=ppcl fotoo)+ 5 fi ()]
¢

)

(19)

and the momentum flux in the x direction is given
by:

X 2 ,2/,) x.
M(x>=j pirdy =<2 f (/P dy
0 Iy 0

1ie’h
- ,_l.l.) = Upo+7F 1]

Van P. Carey and JOSEPH C. MOLLENDORF

where

™~

Ly = J (fg)*dyand 1y, = 2o fidn.
0

O

For the isothermal surface 7% is a constant so that
the expansions (7) and (8) are simple parameter
expansions. However, for the other flows considered
here y% is a function of x and therefore (7) und (8)
are actually coordinate expansions. For the uniform
flux surface 7% is proportional to x'* so that the
expansion is valid for small x, with the eflect of
variable viscosity increasing with downstream dis-
tance. For the wall plume and free plume ;% is
proportional to x~** and therefore expansions (7)
and (8) are valid for large x with the effect of variable
viscosity increasing as x — 0.

Stewartson [35] discusses a fundamental difficuity
which arises when trying to obtain asymptotic
solutions of the boundary-layer equations valid for
large x. He points out that the parabolic nature of
the boundary-layer equations leads to an arbitrari-
ness being introduced into the asymptotic expan-
sion at some stage as a consequence of neglecting
the boundary conditions at the leading edge. He
shows that to resolve this and obtain a solution
which is exponentially small as 5 — % it is often
necessary to include logarithmic terms in the
asymptotic expansion. Consequently, when develop-
ing higher order terms in the expansions of f(y.;*)
and ¢ (n,»*) for the plume flows, one must consider
the possibility of logarithmic terms in 7§ as well as
powers of ;¥ However, for the isothermal and
uniform-flux surfaces we cxpect higher order terms
to be only increasing powers of ;%.

CALCULATIONS

The perturbation analysis provides equations valid
for [y#| small. Comparison of these results for the
isothermal conditions with the more exact similarity
solution of Carey and Mollendorf [31] is an
indication of the accuracy, or range of validity of the
present perturbation analysis.

Previous works that have dealt with the constant
property analysis of the four flows considered here,
have employed different mathematical formulations.
The formulation (9), with the appropriate boundary
conditions and value of n, corresponds (o the
constant-property analysis of Gebhart [36] for the
isothermal surface condition [(11b) and (16a)]. the
uniform heat-flux condition [(12b) and (16b)] and
the plane plume above a horizontal source [(14b)
and (16¢)]. The equations in (9) with (13b) and (16¢)
correspond to the constant property analysis of
Jaluria and Gebhart [37] for the flow above a
horizontal line source on an adiabatic vertical
surface.

Numerical integration of equations (9) and (10)
with the appropriate boundary conditions was donc
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using a predictor-corrector to integrate and the
technique described by Nachtsheim and Swigert [38]
to correct the initial guesses. The numerical in-
tegration scheme employed automatic local sub-
division of the independent variable, 5, to ensure
prescribed accuracy. An accuracy criterion of 1071°
was used and #.q,. Was increased to as large as 70 so
that all results were unchanging to five digits. For
the non-similar flows, calculations were carried out
for values of Prandtl number of 5, 10, 50, 100 and
500 which are representative of many common
liquids with temperature-dependent viscosity. For
the isothermal boundary condition, the present
perturbation solution results are given for Pranc*
numbers of 10 and 100.

RESULTS

For the first order, linear variation of viscosity
with temperature it can be shown that

oy He

where p, and p are the viscosity at r, and 1,
respectively. The relationship between y¥ and po/u,,
is not explicit since ¢ (0) is implicitly a function of y}.

Since for most liquids f is greater than zero and
(1/u)(dy/dt) is less than zero, y§ <0 usually cor-
responds to t, > t, (heated flows) and upward flow
with u, < p,.. The most common case for y§ > 0 is
to < t, (cooled flows) and downward flow with
Ho = [y

The stream function, as defined here, is based on
the film viscosity. For the flows adjacent to a vertical
surface, the shear stress at the surface, 7,(x), is

therefore a function of y¥ directly, as well as through

f0).

To(X) = p3(4/x2)(Gri/4)**t*/p (22)
where ™ = [1+¢(0)7}/2] /"(0)/[¢(0)]*"*. Substitut-
ing the expansions for ¢ and f” and keeping only
first order terms in ;¥ yields

™ = [(1+7}/2)15'(0)
+ 73O/ [ho(0) +7E, (0)]*%.

The numerical results of the perturbation analysis
for the four flow configurations corresponding to the
indicated values of Prandtl number are summarized
in Table 1. For the isothermal condition, Table 2
provides a detailed comparison of the perturbation
results with those for the corresponding similarity
solution. It can be seen that for [y7| as large as 0.8 the
perturbation results for the heat transfer, ¢'(0); mass
flow, f(oc); and wall shear t*, parameters agree
within 2% of the similarity solution results. These
results imply that despite the initial assumptions of
small [y¥], the perturbation analysis provides mean-
ingful results for |y}| < 0.8. Figure 1 shows f;, ¢, f1
and ¢,, for the isothermal surface condition with
o, = 100. Also shown is a comparison of the velocity
and temperature profiles predicted by the similarity
solution and the perturbation analysis for o, = 100
and yf = —0.8. The respective profiles of the two
analyses are seen to agree well across the flow field.

The effect of non-zero y% on the velocity and
temperature profiles for the uniform heat flux surface
can be seen in Fig. 2 for 7%= —0.8, 0, 0.8 and
o, = 100. The profiles for % = 0 correspond to f;
and ¢,. ¢, and f| are also shown. The trends for this
flow are seen to be similar to the isothermal surface
condition.

(23)

-0.01

Fig. 1. For the isothermal surface condition with ¢, = 100, ¢, ¢,, /5 and f; and a comparison of the
perturbation solution (¢, and f,) with the similarity solution (¢, and /) for y% = —0.8.
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Table 1. For the perturbation solutions, calculated flow and transport quantities for various n and 7, as indicated

Isothermal surface n = 0

ay 3'(0) 11(0) $t0) $10) fol 20 IR
10 0.41920 —0.16465 —1.16933 0.07625 0.24923 —0.04885
100 0.25169 —0.10438 —2.19137 0.16279 0.13664 -0.03313
Uniform flux surface n = 1/5
Oy J5'(0) 10 $o(0) $1(0) Jfolx) filzy

5 0.45443 —0.15933 —1.07630 0.04934 0.27644 - 0.04037
10 0.39503 —0.14138 —1.31642 0.05216 0.22719 —0.03823
50 0.27779 -0.10291 —2.04739 0.05745 0.14860 —0.02943

100 0.23668 —0.08855 —2.45844 0.05909 0.12448 ~0.02554
500 0.16121 —0.06121 -3.72496 0.06161 0.08289 —-0.01782
Line source plume n = — 35
Of fot0) 1{(0) b0} fol) fil=) IQ Lago Iag,

5 0.47393 —0.00365 —0.01457 0.56380 —0.09529 0.22566 0.17034 —0.00900
10 0.41395 0.00269 -0.02400 0.50156 —0.11013 0.15387 0.12735 —0.01136
50 0.29352 0.01010 —0.04440 0.39762 —0.11868 0.06026 0.06667 —0.01135

100 0.25066 0.01083 -0.05079 0.36253 —-0.11545 0.03972 0.05085 —0.01001
500 0.17131 0.00970 —0.06039 0.29449 —0.10172 0.01485 0.02740 —0.00652
Line source on adiabatic surface n = —3/5

[ 15'(0) 11°(0) $1(0) Jo(0) filx) 1y Iy Iy,

5 0.69236 -0.18996 0.11350 0.46367 —0.12865 0.16901 0.078160 -0.023711
10 0.61060 —0.16864 0.12636 0.38357 —~0.13415 0.10676  0.048987 —-0.018718
50 0.43947 —0.12445 (.14750 0.25304 —0.11956 0.03465  0.015907 —-0.008510

100 0.37679 —0.10771 0.15378 0.21241 —-0.10767 0.021005  0.009668 ~-0.005625
500 0.25895 —0.07516 0.16330 0.14184 —0.07894 0.006448  0.002982 - 0.001945

Table 2. Comparison of present analysis, p, with the similarity solution of Carey and Mollendorf [31]. 5. for an

isothermal vertical surface and small 7%

U0 ‘(0 () ¥ .
9y v ,L‘ ) “, Error ip}l(’ ! °, Error A °, Error ®, Error
' f,(0) ¢,10) So() T*
10 -0.8 0.62655 13.7 —1.24762 1.4 0.28834 0.0 0.37593 1.9
0.55092 —1.23033 0.28830 0.38324
0.8 0.32190 10.7 —1.11899 1.0 0.20829 0.9 0.45066 1.0
0.28748 ~1.10833 0.21014 0.45516
100 —0.8 0.38477 13.9 —2.36000 1.6 0.16324 0.1 0.23086 1.6
0.33519 —2.32160 0.16314 0.23450
0.8 0.19039 11.7 —2.08434 1.1 0.10851 1.5 0.26655 (1.9
0.16819 —2.06114 0.11014 0.26887
The effect of ;¥ on heat transfer for the isothermal q’ X N =0, 78] (Grgt
and uniform flux surfaces is next considered. A heat- (to—1,) \k =N = [r/)(O AR
transfer parameter is related to ¢'(0, p¥) as follows; ) 25)

and the surface heat flux, ¢”, and local Nusselt

number, Nu,, are determined as

cy y=0

k
=[=¢'O.yF)](to—1,)0 4x

The above relation is rewritten for convenience as

_ l,"’§1Vu{ _
(Gl’_,\,)l’“‘

'

[—¢"(0. y5)]/[ (0. 75)]>* (26)

Figure 3 shows the values of the heat-transfer
parameter, N', predicted by the perturbation analysis



Variable viscosity effects in several natural convection flows 103
11.0
0.040 ' 0.8
f ¢
f 106
0.020 10.4
$
10.2
4
0 v = 0
\_" ! T
1
~0.0n0 05 10 15 20 40 60

F1G. 2. For the uniform heat flux surface condition with ¢, = 100, the effect of y% on ¢ (n,7F) and f"(n, 7})
is shown for y} = 0.8, 0, 0.8. Curves for 7% = 0 correspond to f; and ¢,. Also shown are f; (—-—) and
¢y (————). The arrows indicate the direction of increasing ;¥.

a0l VT Ny
\ Yor),
38;

~

12.6

12.0

5

n 1 L

10 -0.8 -0.4 0
*

FI1G. 3. The effect of y¥ on heat transfer. Results of the

perturbation solution are shown for the isothermal (—-—)

and uniform heat flux (—-—) surface conditions for the

indicated values of film Prandtl number. Also shown for the

isothermal condition are the results of the similarity
solution (—).

for the isothermal and uniform heat flux surfaces.
Also shown for the isothermal surface are the N’
results for the similarity solutions. Good agreement
between the perturbation and similarity solution
results is seen for the range of y*¥ considered here, i.c.
[7¥] < 0.8. For both the isothermal and uniform heat
flux surfaces, y¥ < 0 increases the surface heat
transfer while y¥ > 0 reduces it. Even for the limited

range of [yF| < 0.8 the effects on transport for the
isothermal and uniform heat flux surfaces are
significant. For |y¥|=0.8, the deviation from the
constant viscosity (yF = 0) result is as much as 7%
for the heat-transfer parameter, N'; 10%, for surface
shear, t*; and 15% for mass flow, f(x).

The heat-transfer correlations of Fujii et al. [22]
for laminar natural convection from a vertical flat
plate in moderate and high Prandtl number liquids
with temperature dependent viscosity are

(Nuy) ., (vo/v, )02t = 0.49(Gr g) ! 27)
for the isothermal surface and

(Nitg) o (vo/v, )07 = 0.62(Gr¥a)l*  (28)
for the wuniform heat flux surface, where

Gr¥ = gfq’'x*/kv? is the flux Grashof number in
which fluid properties are evaluated at ¢, . Using the
assumption of linear dependence of viscosity on
temperature and assuming g /i, = v, /v, the results
of the present analysis can be converted to a form
that can be compared to these correlations. For this
comparison, the reference temperature for properties
other than y in the present analysis are evaluated at
t.. With these assumptions, one can determine the
specific values of v_ /v, and ¢, which correspond to
particular values of y% and g,. These are determined
as follows

Va/Vo = Ha/tto = (1 =77/2)11 +75[4(0) = 1/2];
o, =0 (1=77/2)

(29)
(30)

where ¢(0) = 1 +7y%¢,(0). For the isothermal surface,
the correlation of Fujii et al. [22] may be written as

Hy = (Nu,),/(Gr)i*

=049(v, /v,)°2'al/* (31
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Table 3. A comparison of the local heat-transfer parameters predicted by the
present analysis and the similarity solution of Carey and Mollendorf[31] CM. with
those predicted by the correlations of Fujii er afl. [22] F, for the isothermal and

uniform heat flux conditions

{a) Isothermal

o By v, G, Hey H, ", Difference
100 —0.8 2333 140 1.942 2,014 35
—04 1.500 120 1.748 1.766 1.0
0 1.000 100 1.550 1.550 0.0
0.4 0.667 80 1.345 1.346 0.0
0.8 0.429 60 1.129 1.141 1.1
100+ —1.6 9.000 180 2.577 2.847 9.5
—0.8 2333 140 1.975 2.014 1.9
0.8 0.429 60 1.142 1.141 0.0
1.6 0.111 20 0.636 0.653 26
1000+ - 1.6 9.000 1800 4727 5.063 0.6
—0.8 2.333 1400 3.58% 3.581 0.2
0 1.000 1000 2.804 2.755 1.8
0.8 0.429 600 2.060 2030 1.5
1.6 0.111 200 1.144 1.162 1.5
(b) Uniform heat flux
T, By v, v T, Hiy HE ¢, Difference
50 —0.8 2.199 70 1612 1.658 28
—04 1.483 60 1.480 1.504 1.6
0 1.000 50 1.344 1.356 0.8
0.4 0.662 40 1.202 1.209 0.5
0.8 0418 30 1.048 1.055 0.7
100 —0.8 2.195 140 1.869 1904 1.8
—04 1.482 120 1.715 1.727 0.7
0 1.000 100 1.556 1.557 0.1
0.4 0.661 80 1.391 1.388 0.2
0.8 0.417 60 1.211 1.212 0.1
500 - .8 2189 700 2611 2.626 0.5
-04 1.482 600 2.393 2.383 0.4
0 1.000 500 2.170 2.149 1.0
04 0.661 400 1.937 1.915 1.1
0.8 0.417 300 1.686 1.672 0.8

+Similarity solutions results of Carey and Mollendorf [31].

which may be compared to the transformed ex-
pression of the present analysis for the isothermal
surface
Hew = (Nuy),/(Grb?
=[—¢OJu—rta2 52
The corresponding relations for the uniform heat
flux surface are
HE = (Nu,), (GrF) 3 =0.62(v, ivy) ' Tal? (33)
and
HZEM = (‘/\("'lx)r/”(G’.f)g’S

=[=¢' O [ 1 =221 42 [H0)]). (34)
When comparing correlations, —¢'(0) and ¢(0) are
determined at the values of ¢, and % which
correspond to v, /vy, and . using (29) and (30).
Table 3 shows a comparison of H,. with H¢y, and H§
with HEy for the indicated values of ;% and ;. The

results of the perturbation analysis are seen to agree
extremely well with the experimental correlations of
Fujii et al. [22] for both the isothermal and uniform
heat flux surface conditions. Also shown in Table 3
for the isothermal surface are the similarity solution
results of Carey and Mollendorf [31] for o, = 100
and 1000. The similarity solution results are in
slightly better agreement with those of Fujii er al.
[22] than those of the perturbation analysis for
I% < 0.8. Even for values of |;%| as large as 1.6 there
is good agreement between the similarity solution
and the correlation of Fujii et «l. [22]. It is
interesting to note that for [;}| = 0.8 the percent
change, compared to the constant viscosity results,
(7% = 0), is as much as 259, for Hy and Hgy; while
for N’, the deviation is limited to no more than 7%,
This difference occurs because, for Hyy and H,, the
reference viscosity is evaluated at 1 while for N' it is
evaluated at t,. This demonstrates how the choice of
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FiG. 4. For the plane plume with o, = 100, the effect of 7% on ¢(y,y¥) and f'(y,7%) is shown for
7§ = —04. 0, 04. Curves for 3§ =0 correspond to f; and ¢, Also shown are fi (—-—) and ¢,

(—~=——). The arrows indicate

the direction of increasing %.

i

10.8

¢

0.6

{0.4

10.2

T T—

0.020—— L
o 0.5 1.0 1.5 2.0 4.0 6.0

F1G. 5. For the concentrated horizontal source on an adiabatic surface with o, = 100, the effect of yF on
¢n,7¥) and f'(n,F) is shown for 7% = —0.4, 0, 0.4. Also shown are f{ (——) and ¢, (—-——). The
arrows indicate the direction of increasing y%.

reference temperature influences the predicted effect
of variable viscosity on heat transfer. This forms the
basis for the alternate method of correlating variable
property effects on heat transfer used by Fujii et al.
[22] in which all fluid properties are evaluated at
t,=to—1/4(to—1,,).

Figures 4 and 5 show the effect of y% # 0 on the
temperature and velocity profiles for the flow above
a horizontal line thermal source and the flow above
a horizontal line thermal source on a vertical
adiabatic surface, respectively. Comparison of the
similarity solution to the perturbation analysis for
the isothermal surface indicates that the results are in
close agreement for |y¥| as large as 0.8. However, for
the two adiabatic flows, the values of f] in the outer
portion of the velocity boundary layer are so large

that 7§ > 0.4 would predict local flow reversal [i.e.
f'n,x)=fom)+9%/1(n)<0]. Since this calls into
question the wvalidity of the boundary-layer
approximations, the range of validity of the present
first order perturbation results for the two adi-
abatic flows is thought to be limited to |y¥|<0.4.
In Figs. 4 and 5, f' and ¢ profiles are shown for
6,=100 and y}=—0.4, 0 and 0.4. The profiles for
7¥=0 correspond to f{ and ¢, and f; and ¢,
are also shown.

It can be seen in Fig. 4 and Table | that for the
plane plume, non-zero values of y} produce signi-
ficant changes in the velocity and temperature at the
centerline of the plume, even for values of Prandtl
number as large as 100 and 500. For [y}| = 0.4, there
is about 2% change in f'(0) and ¢(0) compared to
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the constant viscosity results, while the change in
mass flow, f(x), is as much as 14°. As previously
mentioned, Spalding and Cruddace [32] concluded
that the temperature dependence of viscosity has no
influence on large Prandtl number flows because for
large Prandtl number the region of non-uniform
temperature is thin and concentrated in a regton of
small shear. While their conclusion scems intuitively
correct, the present analysis indicates that it is not
applicable for ¢, < 500. Further, it can be seen in the
profiles in Fig. 4 for ¢,= 100 that the effect of
temperature-dependent viscosity is not confined to
the thermal boundary layer region. The greatest
alteration of the velocity profile occurs in the center
of the velocity boundary layer, well out beyond the
thermal boundary layer. Increasing % produces u
decrease in centerline temperature of the plume
which is opposite to the trend observed for the flow
above a horizontal line source on a vertical adiabatic
surface. In this regard it is interesting to note the
centerline temperature measurements for plane
plumes reported by Fujil, Morioka and Uehara [34].
Their Fig. 9 presents a plot of non-dimensional
centerline temperature vs local flux Grashof number
and shows their own data for air. water and spindle
oil as well as the data for air of Brodowicz and
Kierkus [39] and Forstrom and Sparrow [40] and
the data for water and silicone fluid of Schorr and
Gebhart [41]. The data of Forstrom and Sparrow
[40] and Schorr and Gebhart [41] as well as the air
data of Fujii ¢t «l. [34] all fall about 15", lower than
the line predicted by the similarity solution. Lyakhov
[42] has shown that this systematic deviation is duc
to inaccurate treatment of the entrainment near the
line thermal source. The ¢enterline temperature data
of Fujii ez al. [ 34] for spindle oil and water. however,
are on the line predicted by the similarity solution
for local flux Grashof numbers around 10° and the
data decrease with increasing Grashof number until
they are 157; low at 10°. From the results of Lyakhov
[42] all data should be about 15% low on this plot.
Further, the data of Fujii e/ al. [34] for spindle oil
and water were taken at values of heat Hux that are
an order of magnitude larger than those of the other
authors mentioned here. The high values of heat flux
will produce high centerline temperature differences.
particularly near the source (low values of local flux
Grashof number). Since both water and spindle oil
have temperature dependent viscosity, the data
points at smaller values of local flux Grashof number
would correspond to large negative values of ;%
From Table 1 it can be seen that negative values of
F produce an increase in the centerline temperature
of the plane plume. This suggests that the data
points for spindle oil and water are high at low
values of flux Grashof number because of the effect
of temperature dependent viscosity. For water, the
effect of variable f must also be considered and
therefore the viscosity variation is only one possible
cause of the deviation. However. for oils the viscosity
variation is dominant and the results of our analysis

appear to cxplain the trend seen in the spindle ol
data of Fujii er al. [34].

Finally, Fig. 5 shows the effect of temperaturc
dependent viscosity on the temperature and velocity
profiles for the flow above a horizontal line source
on a vertical adiabatic surface with ¢, = 100. It can
be seen that the effect of the viscosity variation is not
limited to the thermal boundary region. but affects
the velocity profile well out beyond the thermal
region. Compared to the constant property results,
for [7F] = 0.4, the respective differences in ¢(0). t*
and f () are as much as 6%, 5%, and 22°,. The effect
of +¥ and o, on the centerline temperature for the
two adiabatic lows can be seen in Fig. 6. Increasing
7§ produces decreasing ¢(0, %) for the plane plume
while the opposite trend is observed for the plane
wall plume. Also shown in Fig. 6 is the effect of ;%
and o, on the centerline velocity of the plane
plume. For g, =5, increasing 3§ actually produces a
slight decrease in f7(0, ’," ), while for a,210,
increasing ;¥ produces a slight increase in f7(0, ;7).

CONCLUSIONS

For many liquids the variation of viscosity with
temperature is much greater than the variation of
other fluid properties. When this is true, the analysis
presented here provides a more accurate picture of
the thermal and momentum transport in the four
flows considered than the usual analysis with
constant properties. The truncated expansion for u
amounts to a linear variation of viscosity with
temperature which is not exact for many fluids but is

1.10
% 1.00
‘ %zp(o) . 10.90

0.2+

FiG. 6. The effect of Prandtl number on transport, ¢(0, ;v}‘)

for the adiabatic flows as a function of ;¥ and on f"(0.7})

(lower curves) for the plane plume. For the upper curves

( plane plume and — -- concentrated horizontal

source on an adiabatic surface) and for the lower f7(0,7%)

curves, the arrows indicate increasing o, for 6,=35, 10,
50, 100, 500.
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a good approximation for the small values of y}
required for the present perturbation analysis.

Even for moderate values of y%, significant effects
on thermal and momentum transport are found for
all four flows considered here. The excellent agree-
ment between the perturbation analysis results and
the heat-transfer data and correlations of Fujii et al.
[22} for the isothermal and uniform heat flux surface
conditions lends strong support to the calculated
results. It further suggests that for these flows, the
assumption of linear variation of viscosity with
temperature is adequate to predict transport for
many circumstances. The results of Fujii et al. [22]
also agree well with the similarity solution of Carey
and Mollendorf [31].

In light of the conclusions of Lyakhov [42], the
computed results for the plane plume seem to
explain the trends in the centerline temperature data
of Fujii et al. [34] for spindle oil at high values of
source heat flux. While the present first-order
analysis is only applicable to a limited range of y¥, it
provides considerable information about the effect of
temperature dependent viscosity on these laminar
natural convection flows. If needed, greater accuracy
may be obtained with the present perturbation
scheme by including higher-order terms in the
expansions for viscosity, stream function and tem-
perature excess ratio.
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EFFETS DE LA VISCOSITE VARIABLE SUR LES ECOULEMENTS DE CONVECTION
NATURELLE

Résumé- Une analyse réguliere de perturbation est présentée pour trois types de convection naturelle
dans des liquides 4 viscosité variable avec la température: un panache plan ascensionnel, I'écoulement au
dessus d’une source linéaire horizontale sur une surface adiabatique et I'écoulement adjacent & une
surface verticale chauffée & flux uniforme. Alors que ces écoulements ont des solutions de similarité en loi
puissance lorsque la viscosité est constante, cela n'est pas lorsque la viscosité est fonction de la
température. Un écoulement a similarité, celui adjacent a une surface verticale isotherme, est analysé pour
comparaison de fagon & estimer le domaine de validité de I'analyse de perturbation. La formulation
utilisée ici fournit un traitement unifié des effets de la viscosité variable sur ces quatre écoulements. A
I'exception de I'eau, la variation principale des propriétés du fluide est relative a la viscosité absolue. Cela
est connu et déja utilisé pour d’autres écoulements, cela constitue la base de la présente étude. On
présente pour les quatre cas les calculs des perturbations au premier ordre. Plusieurs comportements
intéressants sont suggérés pour I'écoulement et le transfert. Ces modifications par rapport au cas de la
viscosité constante sont significatives méme dans les limites de la perturbation de premier ordre. Les
résultats pour le transfert thermique avec des surfaces a température ou a flux constants sont en bon
accord avec les données et les formules antéricures. Les résultats présentés éclairent quelques conclusions
déja énoncées sur les écoulements de panache.

EINFLUSSE VERANDERLICHER VISKOSITAT BEI EINIGEN FREIEN
KONVEKTIONSSTROMUNGEN

Zusammenfassung--- Eine analytische Losung mit normalem Stdrungsansatz wird fir drei laminare freie
Konvektionsstromungen in Fliissigkeiten mit temperaturabhidngiger Viskositdt beschrieben: eine frei
aufsteigende, ebene Strémung, die Stromung oberhalb einer horizontalen Linienquelle auf einer adiabaten
Oberfliche (Stromung lings einer ebenen Wand) und die Stromung nahe einer vertikalen Oberfliche mit
gleichférmigem Wirmestrom. Wihrend diese Stromungen wohlbekannte Ahnlichkeitslosungen nach
Potenzgesetzen haben, wenn die Viskositdt des Fluids als konstant angenommen wird, sind diese nicht-
dhnlich, wenn die Viskositdt als Funktion der Temperatur betrachtet wird. Eine einzelne idhnliche
Stromung, die nahe einer vertikalen isothermen Oberfliche ist, wird zum Vergleich ebenfalls untersucht,
um den Giltigkeitsbereich der Losung durch Stérungsansatz abzuschétzen. Die hier benutzten Formeln
erlauben eine gemeinsame Behandlung des Einflusses verdnderlicher Viskositdt bei diesen vier Stréom-
ungsformen. Von Wasser abgesehen, ist bei iiblichen Fliissigkeiten die Stoffeigenschaft mit der groBten
Temperaturabhiingigkeit die dynamische Viskositdt. Dies wurde schon frither erkannt und bei der
Behandlung anderer Stromungen genutzt und ist die Grundlage der Anwendbarkeit der vorliegenden
Losung. Berechnete Glieder erster Ordnung des Storungsansatzes werden fiir alle vier Strdmungen
angegeben. Mehrere interessante Auswirkungen vartabler Zihigkeit auf Stromung und Transportei-
genschaften werden durch die vorliegenden Ergebnisse aufgezeigt. Diese Abweichungen von einer Losung
fiir konstante Zihigkeit erweisen sich sogar innerhalb des notwendigerweise begrenzten Giiltigkeits-
bereichs einer Losung durch Stdrungsansatz erster Ordnung als wesentlich. Die Ergebnisse fiir den
Wirmetibergang bei isothermen Oberflichen und bei solchen mit konstantem Wirmestrom befinden sich
in sehr guter Ubereinstimmung mit den entsprechenden Daten und Korrelationen vorausgegangener
Untersuchungen. Die vorliegenden Frgebnisse stellen einige vorausgegangene Schliisse beziiglich
Auftriebsstromungen in einen klareren Zusammenhang.
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BAWAHUE TMEPEMEHHOM BA3KOCTU HA HEKOTOPBIE THI1bl
CBOBOAHOKOHBEKTHUBHbLIX TEUEHUU

AHHOTAUNA — MeTO0/10M BO3MYLLEHHI AHATH3UPYIOTCH TPH THNA JAMHHA PHbIX CBODOIHOKOHBEKTHBHbIX
TEYEHHH B XUAKOCTAX, BAZKOCTb KOTOPBIX 3ABUCHT OT TEMIIEPATYPbl: CBOOOAHO BCILIBIBAIOLIAS N.TOCKAS
CTPyA. BOCXOAAUIMI MOTOK HAQ rOPH3OHTANBHBIM THHEHHBIM HCTOMHMKOM OKO.10 a1HabaTHYECKOH
NOBEPXHOCTH (NPHCTEHHAS M110CKas CTPYS) U TeYEHHE BO3.1€ BEPTHKAJLHON OIHOPOJHO HATPEBACMOIi
NOBEPXHOCTH. XOTA /115 ITHX TEUEHUH WMEIOTCS U3IBECTHBIC CTENEHHBIE ABTOMO1E.TbHbIE PELLEHHUS TPH
MOCTOAHHOH BA3KOCTH. O/HAKO aBTOMOJEJILHOCTb MCYEIAET. €C/HM BA3KOCTh PACCMATPUBACTCA Kak
(dyHKIHS TeMnepaTypsl. EIHHCTBEHHbIH THN TEYEHHA. 1718 KOTOPOTO COXPAHAETCS 4BTOMO.1€.1bHOCTh

TEYEHHE BO3JIE BEPTHKAJIBHOH H30TEPMMHYECKOH MOBEPXHOCTH. BKIHOMEH B AHAIM3 € UETbI OLEHKH
CTENEHU NPHMEHHMOCTH MeTOAa BO3MylleHUH. Mcrmoab3yeMblit B padoTe 110aX01 O0ECewHBaeT BO3-
MOXHOCTh €MHOTO cnocoda y4éTa BJAHAHHMA NMEPEMEHHOH BA3KOCTH HA YKA3AHHBIC THIIbI TCHEHHUS.
HMenno BA3KOCTb M3 BceX CBOHCTB OOBIMHBIX XHMAKOCTEH (3@ MCK:IIOMEHMEM BOJbl) HaMOO:IEE CH.ILHO
3ABHCHT OT TEMNEPATYPsl. ITOT 0O1IeNnpH3HAHHBII PAKT HCNO.TB30BA/ICA TPH OMUCAHHH J1PYIHX TEHCHUH
¥ ObL1 MO/J0XEH B OCHOBY HACTOSILUErO aHasin3a. PaccuMTaHHble BEIWYHHBI B [1€PBOM MOPS.IKE 10
BO3MYILIEHHUIO IIPEICTABIEHBl 111 BCEX PACCMATPHBAEMbIX THNOB TeveHus. [loayueHbl HekoTOpBIC
UHTEPECHBIE BLIBOAbI O BJIMSAHHU NEPEMEHHONH BA3IKOCTH HAa TEYEHME M NEPEHOC Ten.la. KOTopsle npel-
CTABASIOTCA CYLIECTBEHHBIMH AaXe ¢ YYETOM OrPaHM4EHHOCTH NPUMEHHMOCTH pPE3ylbTaTOB, MO.TyYeH-
HbIX B MEPBOM IOPAIKE N0 BO3IMYLIEHHIO. PesyabTatel no Ten1000MeHy 118 H3OTEPMHYECKOI 110BEPX-
HOCTH H MOBEPXHOCTH C MOCTOSHHBIM TEMNJOBBLIM MOTOKOM HAXOAATCH B XOPOLIEM COITACHM € CO-
OTBETCTBYIOUIAMH TaHHLIMU NIPEIbLAYILMX MCCEA0BAHUIA. TToNyUyeHHbIE Pe3y 1bTaThl TAKKE YyTOUHHIOL

HEKOTOPBIE PAaHEE ClIe/1aHHbIE BbIBOAbl OTHOCHTE IBHO NMOIbEMHBIX TEYECHHH.
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