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Abstract--A regular ~rturbation analysis is presented for three laminar natural convection flows in 
liquids with temperature dependent viscosity: a freely-rising plane plume, the How above a horizontal line 
source on an adiabatic surface (a plane wall plume) and the How adjacent to a vertical uniform Hux 
surface. While these flows have well-known power-law similarity solutions when the Huid viscosity is 
taken to be constant, they are non-similar when the viscosity is considered to be a function of 
temperature. A single similar flow, that adjacent to a vertical isothermal surface, is also analyzed for 
comparison in order to estimate the extent of validity of the perturbation analysis. The formulation used 
here provides a unified treatment of variable viscosity effects on these four flows. With the exception of 
water, the major temperature variation of the Huid properties of common liquids is seen to be in the 
absolute viscosity. This has been previously recognized and utilized for other flows and is the basis for the 
applicability of the present analysis. Computed Hrst-order perturbation quantities are presented for all 
four flows. Several interesting variable viscosity trends on How and transport are suggested by the present 
results. These modifications to a constant viscosity formulation are seen to be significant even within the 
necessarily limited range of a first-order perturbation analysis. Heat transfer results for the isothermal 
and uniform heat flux surfaces are in very close agreement with the corresponding data and correlations 
of previous investigations. The present results also place some previous conclusions regarding plume 

flows in clearer perspective. 
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coefficients in equation (6b); 

defined in equations (5a)--(5d); 
specific heat of fluid; 
non-dimensional stream function; 

local Grashof number, 

= ~~~z.~~(f*-f~}~~~; 
locai flux Grashof number, = @qfrs4jkv2; 
acceleration due to gravity; 
heat-transfer parameter, 

= W~,),itGr,)~~; 
flux heat-transfer parameter, 

= (~z~~)~~~G~~)~‘; 
local heat-transfer coefficient; 
thermal conductivity of fluid ; 
momentum flux in the ?I direction ; 
mass flow rate per unit width of surface; 
defined in equations (Sa)---(5d); 

local Nusselt number, = Izx/k; 
heat-transfer parameter, 

= Ji N~~!(G~;J~‘~; 

total heat convected downstream ; 
surface heat flux ; 
temperature ; 
reference temperature, = to - i/4@,-t,); 
film temperature, = (to + t,);‘2; 
vertical velocity component; 
horizontal velocity component; 
vertical coordinate; 
horizontal coordinate. 

Greek symbols 

coefficient of thermal expansion; 

(t,-r.1; 
, 

(rc - t, )0 ; 
r 

perturbation quantity, = (to -;, ),it, ; 
non-dimensional horizontal distance: 

absolute viscosity of fluid ; 
kinematic viscosity of fluid ; 
density ; 
Prandtl number of fluid : 
temperature excess ratio. 

==(t-r,)/(t,-r, ); 
stream function : 
shear stress. 

Subscripts 

CM, refers to results from Carey and Mollendorf 

[31]: 
F, refers to results from Fujii et (11. [22] ; 
.f, refers to conditions at film temperature: 

nr, refers to conditions at mean temperature; 
it’. refers to conditions at the wall ; 
(7, refers to conditions at .Y = 0; 
‘X8, refers to conditions in the ambient fluid; 

0, refers to conditions when $ = 0. 
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IUI‘RODUC‘TION 

DEPARTURES from constant-fluid-property descrip- 
tions of convective transport at moderate Ltnd high 
temperature differences have been evident for some 

time. A brief discussion of variable property treat- 
ment in forced-flow is presented here first. since 

many of the physical considerations ;Lrc similar to 
those of natural convection. For flow in internal 

passages, the radial temperature distribution is 

known to modify the velocity profile through 
temperature -viscosity coupling. As a result, higher 

viscosity near the surface tends to reduce transport. 
The viscosity of gases generally increases with 
temperature, whereas liquid viscosities decrease with 

temperature. Therefore, for heating a fluid. the effect 
of temperature-dependent viscosity is to decrease 
transport in gases and to increase transport in 
liquids. The opposite occurs for cooling ;t fluid. 

Sieder and Tate [I] proposed to correlate this effect 
with the ratio of the absolute viscosities at the 
average (inlet and exit) and wall tempercttures raised 
to the 0.14 power, i.e. (~mI’/*,,)“.‘s. Using this factor. 

all other fluid properties were evaluated at t,. 
The earliest analysis of variable property effects 

~21s done by Schuh [2] for the external forced-flow 
of ;tir and oils over ;i flat plate. A later analysis by 
Cohen ;md Reshotko [3] considered ;t linear 

variation of viscosity as well as compressibility effects 
for various pressure gradients in the external flov~ of 
an ideal gas. Later. Seban [4] extended the Prsndtl 
number and viscosity ratio ranges used by Schuh 
[I!]. Poots and Raggett [5] and [6] have analyzed 

the external forced-flow of water over ;I flat plate. 
rotating disk and circular cylinder. For each con- 

figuration. the effects of variable density. viscosity, 
specific heat and thermal conductivity were included. 

Both measurement and analysis were done by Test 

[7] and Hwang and Hong [8] to assess the effect of 
tariable viscosity on heat transfer in SAE60 oil in ;I 

tube ;md ethylene glycol in :I rectangular duct. 
Hwang and Hong [8] considered both isothermal 

and constimt heat Ilux boundary conditions, and 
used an inverse variation of viscosity with tempern- 
ture. as did Schuh [2] and Seban [4], and Ltttributed 
variable property effects to a 20”,, increase in Nusselt 
number. Buoyancy (or mixed convection) effects 
have been considered theoretically. along with Huid 

property variation nnd blowing or suction. for the 
external flow of water over two-dimensional car- 
tesian or axisymmetric bodies by Kaup and Smith 
[9]. Natural convection effects on forced-flow in ;I 
horizontal tube were considered, both analytically 
and experimentally, by Shannon and Dcpcu [IO]. 
They approximated the viscosity of ethylene glycol 
as :m exponential variation with tempcralure. Com- 
bined forced and free convection in horizontal tubes 
with temperature-dependent viscosity h;ls more re- 
cently been analyzed using an integral technique by 
Hong and Bergles [ 1 I]. For large values of theit 
viscosity-variation parameter, -- (1 /c)(ijc. it)At. heat- 
transfer predictions :Ire 50”,, above those of ;I 

constant viscosity annlysis. Their results ;lre in good 
agreement with their corresponding me:tsuremen& in 

water and ethylene glycol. 
Very recently. Ockendon and Ockendon 1 121 

presented an analysis for suddenly heated or cooled 

channel Row of a Newtonian fluid uith the \iscosilj 
either algebraically or cxponcntially dependent on 
temperature. Pearson [ 131 has also analyzed channel 
flow of high viscosity fluids bvhen internal heat 

generation is very large. Hc presents ;t xiniilarit> 
solution for steady pklne developing channel ilo\\ 01 

a fluid whose viscosity \arics cxponentiall) with 
temperature. He also discusses unsteady How. stend! 
flow in pipes, radial disk How. and How in channels 

of varying depth. 

Certain common features of formulation II ill be 
seen between the aboce discussion of variable 
property effects in forced-flow and the followins 
discussion related to n;ttur;J convection tlows. ~-‘oI 

example, viscosity karialion alone is the dominant 

variable property effect for many.modeKttc ami high 
Prandtl number liquids other than water, but the 
inclusion of additional properly variations is neces- 
sary for gases nnd %ater. 

The enrlicst known theoretical treutmcnt of vari- 

able property effects in n:ktural convection is the 
perturbation analysis of lH:rr:r [ 141 for ;ilr. The 
solution is applicitble for mall v:~lues of the 

perturbation paramctcr. i:,, = (I,, ~ I , ) I,. SW later 
notation. Sparro\+ [ 151 also considered natural 
come&m with variable propertics and variable wll 

temperature. At itbout the. smnc time. Tanae\ [ 161 
investigated natur:ll convection in :I gas with 
variable viscosity. HIS did Plapp [17] for oils. A later 

investigation by Sparrow, and Gregg [IX]. :tn:Jyzed 
natural convection from an isothermal vertical 
surface for variable-propcrtb gases ;ind liquid mer- 

cury. Their results indic:tted thut the (ilm tcmpern- 
ture is adequate for most applications 21nd they 
suggested ;I more ;iccurUte reference temperature fog 
more extreme conditions. Using a succes,ice ap- 
proach method. H;lr:i [ 191 extended the r:mgc 01 
applic:tbility of his previous perturbation solution to 
x,, = 2 and 4. 

The non-ideal-gas bcha%r of steam W;IS in- 

corporatcd in an analysis of natural convection from 
;I vertical isothermal surfilce by Minhowycz and 

Sparrow [20]. They found ;I reference temperature 
coefficient of 0.46 instead of 0.38 found h! Sparrolc 
and Gregg [18]. Note th;lt using the ;Iverage (or 
film) reference temperature corresponds to 2 coef- 
ficient of 0.50. 

Variable propert! effects in water :md carbon 
dioxide at supercrilical pressures wx analyzed b> 
Nishikawa ;tnd Ito [21]. ;IISO for mttural convection 
adjacent to a vertical isothermal surfncc. 

Two methods of correlating the effects of cariable 
properties on heat transfer for natural convection 
from vertical surfaces in liquids were examined by 
Fujii c’t I/[. [22], They presented extensive cxperi- 
mental dat:t for natur~il conbcction rrom :I vertical 
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cylinder with isothermal and uniform heat flux 
boundary conditions in laminar, transition and 

turbulent flow. Test data was taken in water, spindle 

oil and Mobiltherm 600 oil. They concluded that 
since the boundary-layer thickness was small com- 
pared to the radius of the cylinder, the heat-transfer 

coefficients should be within 1.37; of those for the 
corresponding flat plate problem. The first method of 
correlating the data consisted of using the constant 
property correlations for Nusselt number and 
evaluating all properties at a reference temperature, 

fp = t,- li4(r,-t, ). They noted that this choice of 
reference temperature agrees with that suggested by 
solutions of the laminar natural convection 
boundary-layer equations presented in two previous 

studies: the approximate solutions of Fujii [23] for 
ethylene glycol and the numerical solutions of Akagi 
[24] for mineral oils. The second method that Fujii 

et a/. [22] used to correlate their data in oils was first 
proposed by Akagi [24] and applies only to liquids 
for which viscosity variation is dominant. This 

amounts to a Nusselt number correction factor 

which consists of the ratio of kinematic viscosities at 

the surface and ambient temperatures raised to the 
0.21 power. The resulting correlation has the form, 
NLI,(v~~‘Y,)“.~’ x (C;~,PI-)“~. with all other fluid 
properties evaluated at the ambient fluid tempera- 
ture, t,,. For the uniform hear flux surface they 
transformed the correlation to incorporate a flux 

Grashof number and the resultant exponent of the 
viscosity ratio became 0.17. Excellent agreement was 

found between their data and both methods of 
correlation. 

The similarity analysis of Piau [25] also treated 

variable property effects in natural convection from 
vertical surfaces in moderate and high Prandtl 
number liquids. He points out that the main 
property variations in water at moderate tempera- 
ture levels are in viscosity, p, and the volumetric 
coefficient of thermal expansion, /I, and that for 

higher Prandtl number liquids, the variation of /r is 
often negligible. The formulation considers a general 
variation of p and /I with temperature. but calcu- 
lations are performed for a linear variation. Results 

are presented for water (oJ. = 7.03, 5.45 and 3.59) for 
two temperature differences and three temperature 
levels, and for the limiting situation of gl. -+ X. In a 
follow-up paper. Piau [26], includes the effect of 
thermal stratification of the ambient in an analysis 
which also includes variable p and fl effects. 
Corresponding measurements of the temperature 
field in stratified water are in good agreement with 
theoretical results, and an attempt is made to 
correlate transition to turbulence with parameters 
characterizing property variation. 

Barrow and Sitharamarao [27] examined the 
effect of variable /j on natural convection in water, 
but ignore the temperature dependence of absolute 
viscosity, which is known to be important. Brown 
[28] used an integral method with variable p and p 
but also overlooked the important variation of p. 

Natural convection from a vertical, uniform-heat- 
flux surface was investigated experimentally and 

using an integral method by Ito rf al. [29]. The 

temperature variation of all relevant fluid properties 
was included for carbon dioxide near its critical 
point and for spindle oil and Mobiltherm oil at 

atmospheric pressure. Their results for Mobiltherm 
oil agree well with the constant property results 

evaluated at the reference temperature suggested by 
Fujii et al. [22], t, = t,- 1/4(t, - t, ). Measurements 

by Booker [30] in a horizontal layer of high Prandtl 
number oil, experiencing a 300-fold viscosity vari- 

ation, indicate only a 12”,, reduction in heat 

transfer below that of a corresponding constant 
viscosity fluid. 

Carey and Mollendorf [31] have shown the 

mathematical forms of viscosity variation with 
temperature which result in similarity solutions for 

laminar natural convection from a vertical isother- 
mal surface in liquids with temperature dependent 

viscosity. For the simple case of a linear variation of 
viscosity with temperature they presented numerical 

results for a range of their viscosity parameter, 

from - 1.6 to + 1.6 for values of film Prandtl 

number, ‘To, from 1 to 1000. 
Considerably less work has been done concerning 

variable property effects on constant buoyancy 
natural convection flows: the plane plume above a 
horizontal line heat source and the flow above a 
horizontal line heat source on a vertical adiabatic 

surface. Spalding and Cruddace [32] evaluated the 
effect of temperature-dependent viscosity on the 
laminar plane plume flow above a line heat source in 

a fluid of large Prandtl number. They concluded that 
the temperature dependence of the viscosity has no 
influence on the flow because, for large Prandtl 
number, the region of non-uniform temperature is 
thin and concentrated in a region of small shear 
stress. Liburdy and Faeth [33] treated variable 
property effects for both the laminar plane plume 
and the horizontal line heat source on an adiabatic 

surface by assuming pp = p,pL, and pk = p,k,. 

Through the use of a Howarth transformation they 
were able to reduce the variable property problem to 
the equivalent constant property similarity solution 

equations obtained by Fujii et d. [34]. While the 
form they assumed for the property variations may 
be somewhat applicable to gases, it is not character- 
istic of most liquids. 

Carey and Mollendorf [31] have shown that. if the 
viscosity is expanded as a Taylor series in tempera- 
ture about the film temperature, a similarity solution 
may be obtained for vertical laminar natural con- 
vection from an isothermal surface. A necessary 
condition for similarity is that t, - 1, be independent 
of s, which essentially requires that t, be constant in 
an unstratified medium. Three vertical boundary- 
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layer flows of considerable practical importance 
where I, is variable in the downstream direction are: 
a uniform heat flux surface. an adiabatic surface with 
a concentrated energy source along the leading edge 
and a plane plume arising from a concentrated 

horizontal thermal source. Here we use a per- 
turbation method to analyze the effect of tempera- 

ture dependent viscosity on the above three vertical 
plane flows. The perturb~~tion parameter is 

([” _ f x ),) 
, 

where 7; is evaluated at the film temperature; and 

the centerline temper~Itul-e difference. (to-t,),,. is 
that which the flow would have assuming constant 

viscosity evaluated at the film temperature. Since to 

and therefore 77 vary with x, these will be non- 

similar solutions. However, the only difference in the 

formulations for the three Rows are the boundary 
conditions and the coefficients in the differential 
equations. The formlll~~tion, given in the next section, 
considers a general power-law dependence of tem- 
perature difference with downstream distance, i.e. 

t”-t, = A’.\-“. The three flow configurations cor- 

respond to particular values of Jr. 
Computed first-order perturb~~ti~~n quantities are 

presented for these three non-similar flows for 

Prandtl numbers ranging from 5 to 500. In addition, 
first order perturbation quantities for the isothermal 
surface condition have been calculated for Prandtl 

numbers of IO and 100. The results for the 
isothermal surface are compared with the similarity 
solution of Carey and l~ollendorf 13 l] to determine 
the range of 77 for which they are valid. The use of 
this formulation makes it possible to analyze the 

effect of temperature dependent viscosity on these 
flows in a unified manner. 

The present formulation assumes steady, two- 
dimensional (plane). vertical natural convection flow 

and incorporates the usual Oberbeck Boussinesq 
and boundary-layer assumptions. The absolute vis- 

cosity. ir. is taken to be variable in the 

force-momentum balance while the fluid volumetric 
coeflicient of thermal expansion. f$. specific heat, cI, 
and thermal conductivity. L, are assumed to be 
constant. Viscous dissipation. motion pressure and 
volumetric energy source effects are neglected. This 
results in the following governing equations: 

(la) 

+&(t-t,) (lb) 

ilc) 

where 11 and I’ are the vertical and horizontal v&At! 
components respectively and ,i is taken to he in the 
negative .Y direction for heated flows. The tempera- 
ture of the quiescent ambient fluid. t, , at large values 
of J’ is taken to be constant. Except for LL. the tluid 

properties in (1 b) and (Ic) arc viewed as constants to 
be evaluated at some reference temperature. 

The absoiute viscosity, ,n, is expanded in a Taylor 
series about its value at the film tel~lper~lture: 

,Ll = p, + (r-.r,)2+.... (21 
/ 

This particular form is chosen to allow definition of 
the stream function based on the absolute viscosity 

at the film temperature, pf. For liquids, all transport 

properties vary with temperature. However, for 
many liquids, (petroleum oils, glycerin, glycols, 

silicone fluids. and some molten salts. for example) 
the percent variation of absolute viscosity with 
temperature is much greater than that of the other 
properties. Under these conditions, an analysis 
incorporating the above assumptions describes the 
momentum and thermal transport more accurately 

than the usual assumption of constant properties 
evaluated at some reference temperature. For some 

liquids, properties other than /l vary strongly with 
temperature. in particular, water and methyl alcohol 
exhibit strong variation of both i( and /I. Further- 
more, the assumptions made here are not justified for 
gases since the variation of other gas properties with 
temperature cannot be neglected. 

The viscous shear term in (1 b) can be expanded 

and, after substitution. the momentum equation 
becomes 

The following generalizations are introduced to 
obtain the equations in terms of the generalized 
stream and temperature fullctions.~‘~~nd 4: 

where (to - r ,.)<) is the downstream temperature 
difference (along the .Y axis) which would result for 
;‘; = 0. Similarly, the term (1 ..iiL,.)(d;l!dt )l. is evaluated 
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at the film temperature of the flow, tJ. = (to + t,),J2, 
when y; = 0. 

In terms of the variables defined in (5), the 
expansion for viscosity may be written as 

/I = PJ[l +rT(X)(~-r)+ua2[YT(X)]2(~-t)2 

+a3[y~(x)]3(~-_t)3+...] (6a) 

where the a, are properties of the fluid given by 

Since (lo-t,),, must be non-zero, y; can be zero 
only if (dp/dt)f = 0. For virtually all Newtonian 
liquids, the variation of viscosity with temperature is 

monotonic, i.e. no extrema arise, and dp/dt can be 
zero only if p is a constant, whereupon the higher 
order derivatives are also zero. Therefore, if 

dp/dt = 0, then 77 = 0, the coefficients a.($)” = 0 
and p is a constant, cc,. Hence the expansion (6a) is 
well behaved for d,u/dt + 0. 

Expansions for the stream and temperature func- 
tions j’(q, x) and 6 (n. x) are postulated as 

.f(rl. 7;) = f(% x) = .fb(‘l)f$(X)S1(rl) 

+~~(x)12f2(~)+... (7) 

cb(rl. 7;) = #Q. x) = &(V)fYf(X)&(V) 

+[i.J*(X)12&(V)+.... (8) 

Here we consider only first order terms and therefore 
the expansions for /L, ,f and 4 are truncated after 
terms of order 7;. In (6a) this amounts to a linear 

variation of viscosity with temperature as a first- 
order approximation. However, greater accuracy 
may be obtained for a specific fluid by retaining 

higher order terms in (6a), (7) and (8). If the 

variation of viscosity with temperature of the fluid is 

known, the additional parameters a, may be de- 

termined from (6b). 
Substituting (6a), (7) and (8) into (lc) and (4) with 

the generalizations in (5). the equations for f& do, ,f; 
and 4, are then determined for any value of n. 

f~“-(2n+2)(fb:)‘+(n+3).fbfo+~,,=O (9a) 

~b’+a~[(3+n)~b.f;,-4nf6~“1 = 0 

1;“‘-(8n+4).f~,f;+(5n+3)fb’lfi +(n+3).fbf;’ 

+4I +fb”‘($&- l/2)+&&’ = 0 

&;‘+a,[(3+n)~;fb-8nf6~I-4nf;‘~o 

+4bf1 (3 + 5n)] = 0. 

(9b) 

(lOa) 

(lob) 

The fluid properties p’f and 77 are to be evaluated 

at the film temperature, tS = (t,,+t,),/2, and using 

the temperature difference, (to -t,)O. that the tlow 
would have if the viscosity were constant Cy; = 0). 

These are related to the actual film temperature, t,.a, 
and temperature difference, t, - t , , as: t, -t )I = (t, 

-t,)& and fJa=f,~+t(to-_t,)o[~(0)- 11. The film 
Prandtl number, 0,. is defined as o,.=~~c,,/k, where 

pLf is the previously defined film viscosity and cp 

and k are evaluated at some chosen reference tempera- 
ture, t,. For the isothermal condition, $ will be seen 

to be identical to y,. as defined by Carey and Mollen- 
dorf [31]. The corresponding Grashof number, Gr,, 

is based on (to-t,),. Gr, is related to the actual 

physical local Grashof number by Gr:= Gr,4(0). 
The boundary conditions specified below are 
consistent with this formulation. 

The relevant boundary conditions for the four flows to be analyzed here are as follows, where the primes 
indicate differentiation with respect to ‘1. 

(a) Isothermal surface with horizontal leading edge, n = 0 

4(m, x) = .f’(O, x) = f(0, x) = .f’(c/-, x) = 1 -c#J(O. x) = 0 

l-&(O) = f&(m) = f;(o) = &(O) = f;(m) = 0 

4,(O) =41(x) = K(O) = ,fi(O) = f;(m) = 0. 

(b) Uniform-flux surface with a horizontal leading edge, II = l/5 

4(X, X) = .f’(O, x) = .f(O, x) = f’(X, x) = 0 

1 -&(O) = &(x) = f;(o) = &(O) = f;(m) = 0 

&l(O) = 4,(x) = f;(o) = fi(O) = ,fy(3c) = 0. 

(c) An adiabatic surface with a concentrated heat source along the horizontal leading edge, n 

@CO, s) = f“(0, x) = .f@, x) = f’(K, .X) = 0 

l-&(O) = &(O) = fb’(O) = &(O) = .&(m) = 0 

&l(O) = 4l(‘Z0) = f;‘(O) = fi(0) = f/(m) = 0. 

(d) A plane plume rising from a horizontal thermal source, n = - 315. 

@(O, X) = .f(O, x) = f”(0, x) = f’(c0, x) = 0 

1 --@o(O) = (P;(o) = f;(o) = f;‘(o) = f;d(‘X) = 0 

#l(O) = 41(c;c) = fi(0) = f;‘(o) = f;‘(W) = 0. 

(lla) 

(1 lb) 

(1 Ic) 

= 

(12a) 

(12b) 

(12c) 

: -3/5. 

(13a) 

(13b) 

(13c) 

(14a) 

(14b) 

(14c) 



For the isothermal condition, II = 0. and since 
41(O) = 0, the temperature at j’ = 0 is not altered by 
varying ;tf. Consequently, the film temperature. 

tl. = (t,+t,)!‘2, and t,--t, arc not altered by 
varying 7;. Therefore, for the isothermal condition. 

;‘; is equal to yl = (li~c),(d~cidt)s(t,,-r, ) as defined 
by Carey and Mollendorf [31]. The values of II 

shown above for the other three flow conditions are 
determined by calculating the value of Q(r), the total 

heat convected in the flow at any downstream 
location .Y. 

Q(s)= ’ s pc,(t - t , )ZI dj, 
0 

This must increase linearly with x for the uniform 
heat flux surface condition, (b), and be independent 

of x for the adiabatic Rows, (c) and (d). Therefore, 

II, = 0 (16a) 

llh = I ‘5 (16b) 

II, = lid = - 3. 5. (16~) 

Including the first order terms in ,f‘ and 4 for 7; # 0, 

Q(x) is 

I 

Q(x) = p,.c,cd 41o.1; dv 

+$ s ‘ (4,.r’;+4./‘b)d~ (17) 
0 1 

For the uniform flux condition, (b), and the 

adiabatic flows, (c) and (d). integration of the first 

order energy equation (lob) shows that the second 
integral in (17) is zero. This is required to ensure that 
additional s dependence is not added to Q(s) 
through $. Q(s) may therefore be written as 

I* I 

The mass flow per unit width of surface, ril, becomes 

I 
I 

= /_lfC .l”da=~LICCf”(~)+:rf.f;(CC)l (19) 
0 

and the momentum flux in the x direction is given 
by: 

I 

M(x) = (.tT d) 

where 

For the isothermal surface ;‘; is ;I constant so that 
the expansions (7) and (8) are simple parameter 

expansions. However, for the other flows considered 
here ~7 is a function of s and therefore (7) and (8) 

are actually coordinate expansions. For the uniform 
flux surface $ is proportional to .Y’ ’ so that the 
expansion is valid for small .x. with the efl’ect of 

variable viscosity increasing with downstream dis- 

tance. For the wall plume and free plume ;I: is 
proportional to X~ 3 ’ and therefore expansions (7) 
and (8) are valid for large s with the effect of \ariahle 
viscosity increasing as s + 0. 

Stewartson [35] discusses a fundamental difficulty 
which arises when trying to obtain asymptotic 
solutions of the boundary-layer equations I alid for 

large X. He points out that the parabolic nature of 
the boundary-layer equations leads to an arbitrari- 
ness being introduced into the asymptotic expan- 
sion at some stage as a consequence of neglecting 

the boundary conditions at the leading edge. He 
shows that to resolve this and obtain a solution 
which is exponentially small as ‘1 + x it is often 

necessary to include logarithmic terms in the 
asymptotic expansion. Consequently, when develop- 
ing higher order terms in the expansions of f’(r/.;**) 

and @(q,;‘*) for the plume flows, one must consider 
the possibility of logarithmic terms in ;,T as well as 

powers of ;‘J*. However, for the isothermal and 
uniform-flux surfaces we expect higher order terms 
to be only increasing powers of ;‘y. 

The perturbation analysis provides equations valid 
for @ small. Comparison of these results for the 
isothermal conditions with the more exact similarity 
solution of Carey and Mollendorf [31] is an 
indication of the accuracy. or range of validity of the 
present perturbation analysis. 

Previous works that have dealt with the constant 
property analysis of the four flows considered here, 

have employed different mathematical formulations. 
The formulation (9). with the appropriate boundary 
conditions and value of II, corresponds to the 
constant-property analysis of Gebhart [36] for the 
isothermal surface condition [(l lb) and (Iha)]. the 
uniform heat-flux condition [(12b) and (16b)] and 
the plane plume above a horizontal source [(14b) 
and (16c)]. The equations in (9) with (13b) and (16~) 
correspond to the constant property analysis of 
Jaluria and Gebhart [37] for the How above a 
horizontal line source on an adiabatic vertical 
surface. 

Numerical integration of equations (9) and (10) 
with the appropriate boundary conditions was done 
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using a predictor-corrector to integrate and the 

technique described by Nachtsheim and Swigert [38] 

to correct the initial guesses. The numerical in- 
tegration scheme employed automatic local sub- 
division of the independent variable, ye, to ensure 
prescribed accuracy. An accuracy criterion of 10mro 

was used and r/edge was increased to as large as 70 so 
that all results were unchanging to five digits. For 

the non-similar flows, calculations were carried out 
for values of Prandtl number of 5, 10, 50, 100 and 
500 which are representative of many common 

liquids with temperature-dependent viscosity. For 

the isothermal boundary condition, the present 
perturbation solution results are given for Pran?” 
numbers of 10 and 100. 

RESULTS 

For the first order, linear variation of viscosity 

with temperature it can be shown that 

;‘; = (;t- 1)/[~(O)+I,2(~- I)] (21) 

where p. and p, are the viscosity at to and t,, 
respectively. The relationship between y; and pa/pm 
is not explicit since 4(O) is implicitly a function of ~7. 

Since for most liquids 1 is greater than zero and 
(l/p)(dlc/dt) is less than zero, 7; < 0 usually cor- 

responds to to > t, (heated Rows) and upward flow 
with p. < pZ. The most common case for ~7 > 0 is 
to < t, (cooled flows) and downward flow with 

PO ’ p(I. 
The stream function, as defined here, is based on 

the film viscosity. For the flows adjacent to a vertical 

surface, the shear stress at the surface, ro(.x), is 

therefore a function of ~7 directly, as well as through 

f”(0). 

TV = p~(4/.x2)(Gr~/4)3’4r*/p (22) 

where T* = [l +$(0)$/2]f”(O)/[~(O)]3J4. Substitut- 
ing the expansions for 4 and .f” and keeping only 

first order terms in yf yields 

T* = [(I +$/2)&‘(o) 

+v;f;“(O)]/[~o(O)+~$% (0)]3’4. (23) 

The numerical results of the perturbation analysis 

for the four flow configurations corresponding to the 
indicated values of Prandtl number are summarized 
in Table 1. For the isothermal condition, Table 2 

provides a detailed comparison of the perturbation 
results with those for the corresponding similarity 
solution. It can be seen that for I$ as large as 0.8 the 
perturbation results for the heat transfer, 4’(O); mass 
flow, f’(m); and wall shear T*, parameters agree 
within 2% of the similarity solution results. These 
results imply that despite the initial assumptions of 

small I#, the perturbation analysis provides mean- 
ingful results for I$ < 0.8. Figure 1 shows f& +o, .f;’ 

and $t, for the isothermal surface condition with 

gl. = 100. Also shown is a comparison of the velocity 
and temperature profiles predicted by the similarity 
solution and the perturbation analysis for ‘T/ = 100 
and ~7 = -0.8. The respective profiles of the two 
analyses are seen to agree well across the flow field. 

The effect of non-zero 7; on the velocity and 
temperature profiles for the uniform heat flux surface 
can be seen in Fig. 2 for 77 = -0.8, 0, 0.8 and 

CT~ = 100. The profiles for ~7 = 0 correspond to ,f; 
and $o. $r and f; are also shown. The trends for this 
flow are seen to be similar to the isothermal surface 
condition. 

- 0.8 

c#J 

- 0.6 

1 I I 
1.0 2.0 4.0 6.0 

1 

FIG. I. For the isothermal surface condition with yJ = 100, c$,,, d,, .fd and .G and a comparison of the 
perturbation solution (4, and &) with the srmilarity solution (4, and ,c) for y; = - 0.8. 



102 V\u P. C‘&KFY and JOSEPH C‘. MOI LI~NIX~K, 

Table 1. For the perturbation solutions. calculated flow and transport quantities I'oI- \ariou\ ,z and vii ;,I ~nd~carcd 
-- 

Isothermal surface II = 0 

"I 1d'cOr /;'(()I dJ;,lO, (i,; IO) /o( 1 I 
~_____ 

10 0.41920 -0.16465 - 1.16933 0.07625 0.249'3 

100 0.25169 ~0.10438 -2.19137 0.16279 0.1 3664 

Uniform flux surf&e II = 1'5 

Oil to"c0, i;'co, &W, cr, (0) fC,(Y 1 
..______ 

5 0.45443 -0.15933 ~ 1.07630 0.04934 0.27644 

10 0.39503 -0.14138 - 1.31642 0.05216 0.727 19 
50 0.27779 -0.10291 -2.04739 0.05745 0.14860 

100 0.2366X -0.08855 -2.45844 0.05909 0.1 2448 

500 0.16121 -0.06121 -3.72496 0.06161 0.0X289 

/,I/ 1 

~ 0.04xX5 
0.033 Ii 

I,(/ I 

- 0.04037 
-0.03823 
-0.02943 
-- 0.02554 
~-0.017xll 

Line source plume ,I = -3.5 

01. f;(O) ,r;co, (i,,(O) lo ( % 1 f,(r) 1, I,,” 1 1, I 

5 0.47393 -0.00365 -0.01457 0.56380 -0.09529 0.22566 0.17034 - 0.00900 
IO 0.41395 0.00269 -0.02400 0.50156 -0.11013 0.15387 0.12735 -0.01 136 

50 0.29352 0.01010 -0.04440 0.39762 -0.11868 0.06026 0.06667 ~~0.01 I35 

100 0.25066 0.010x3 -0.05079 0.36253 -0.11545 0.03972 0.05085 - 0.0 1001 
500 0.17131 0.00970 -0.06039 0.29449 -0.10172 0.01485 0.02740 -~ 0.00652 

Line source on adiabatic surface !I = -3.5 

5 0.69236 -0.18996 0.11350 0.46367 -0.12865 0.16901 0.078160 -0.023711 

10 0.61060 -0.16864 0.12636 0.38357 -0.13415 0.10676 0.048987 -0.01871x 

50 0.43947 -0.12445 0.14750 0.25304 -0.11956 0.03465 0.015907 - 0.0085 IO 
100 0.37679 -0.10771 0.1537x 0.21241 -0.10767 0.021005 0.00966X - 0.005625 

500 0.25895 -0.07516 0.16330 0.14184 -0.07894 0.006448 0.002982 -- O.OOI945 

Table 2. Comparison of present analysis, p, with the similarity solution of Carey and Mollendorf 1311. .A. for an 
isothermal vertical surface and small ;‘: 

;,T 
/,“CO, 

I,"(O) 
“<, Error "II Error 

i,(X) 

.1,(-C. 1 

I 0 -0.8 0.62655 
0.55092 

0.8 0.32190 
0.28748 

100 - 0.8 0.38477 
0.33519 

0.X 0.19039 
0.16X19 

13.7 - 1.24762 
- 1.23033 

IO.7 - I.1 1899 
- I.10833 

13.9 - 7.36000 
-2.32160 

Il.7 - 2.08434 
- 2.061 I4 

1.4 0.28834 
0.28830 

I .o 0.20829 
0.21014 

1.6 0.16324 
0.16314 

I.1 0.10851 
0.1 1014 

r* 
",> Error ’ 

r* 
“,, Error 

P 

0.0 0.37593 I .9 
0.38324 

0.9 0.45066 I .o 
0.455 I6 

0. I 0.230X6 I.6 
0.23450 

1.5 0.26655 0.9 
0.26X87 

The effect of 7; on heat transfer for the isothermal 
and uniform flux surfaces is next considered. A heat- 
transfer parameter is related to 4’(0,$) as follows; 
and the surface heat flux, q”, and local Nusselt (25) 

number, Nu,, are determined as The above relation is rewritten for convenience as 

T 

y” = -k (’ 
iy rz(J 

N’ = $+; = [ -$‘(O. ;,$)]/[&O. ~;)]’ ‘. (26) 
t$ 

= [-@(O.Jq](t,-fI,)o ,“I (;T)‘,; (24) 
Figure 3 shows the values of the heat-transfer 
parameter. N’, predicted by the perturbation analysis 
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FIG. 2. For the uniform heat flux surface condition with gI = 100, the effect of 7; on 4(q, 7;) and ,j”(q, ;I;) 
is shown for ;‘: = -0.8, 0, 0.8. Curves for ;‘; = 0 correspond to fd and $O. Also shown are ,1;’ (----_) and 

q51 (-----). The arrows indicate the direction of increasing 77. 

-0.4 0 0.4 0.8 

I; 

1.6 

‘.4 

:.2 

:.0 

FIG. 3. The effect of yf on heat transfer. Results of the 
perturbation solution are shown for the isothermal (---) 
and uniform heat flux (--) surface conditions for the 
indicated values of film Prandtl number. Also shown for the 
isothermal condition are the results of the similarity 

solution (-). 

for the isothermal and uniform heat flux surfaces. 
Also shown for the isothermal surface are the N’ 
results for the similarity solutions. Good agreement 
between the perturbation and similarity solution 
results isseen for the range of of considered here, i.e. 
Ir;l < 0.8. For both the isothermal and uniform heat 
flux surfaces, 77 < 0 increases the surface heat 
transfer while YF > 0 reduces it. Even for the limited 

range of I$ < 0.8 the effects on transport for the 
isothermal and uniform heat flux surfaces are 
significant. For lyfl=0.8, the deviation from the 

constant viscosity (~7 = 0) result is as much as 7’5, 
for the heat-transfer parameter, N’; loo/;, for surface 
shear, t* ; and 15% for mass flow, I( x ). 

The heat-transfer correlations of Fujii rt cd. [22] 
for laminar natural convection from a vertical flat 
plate in moderate and high Prandtl number liquids 
with temperature dependent viscosity are 

(Nu,), (~+,,‘~*,) O 21 = 0.49(Grxa);4 

for the isothermal surface and 

(27) 

14 (Nu,),(~~~/v,)~~” = 0.62((;r:cr), (28) 

for the uniform heat flux surface, where 

Gr: = g,9q”x4/kv ’ is the flux Grashof number in 
which fluid properties are evaluated at t,. Using the 
assumption of linear dependence of viscosity on 

temperature and assuming ~(m/~~o = vJvo, the results 
of the present analysis can be converted to a form 
that can be compared to these correlations. For this 
comparison, the reference temperature for properties 
other than p in the present analysis are evaluated at 
t,. With these assumptions, one can determine the 
specific values of vJv, and ga which correspond to 

particular values of ;I; and oJ.. These are determined 
as follows 

vm/vo = p,ipo = (1 -~j/2)1: 1 +~;[mw 1~21; (29) 

gu = cJs(l-$/2) (30) 

where &J(O) = 1 + $4, (0). For the isothermal surface, 
the correlation of Fujii et al. [22] may be written as 

H, = (Nu,),,/(Gr,)~4 

= o.49(v,/vo)0~z’u:‘4 (31) 
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Table 3. A comparison of the local heat-transfer parameters predicted by the 
present analysisand thesimilarity solution ofCarey and Mollendorf[.il] CM. with 
thaw predicted hy the correlations of FuJii a trl. [22] F, for the isothermal and 

uniform heat flux condition5 

(;I) Irothernial 

1’ I "0 0, H < \, 

2.333 I 40 I.942 
I.500 I 20 1.74X 
I .ooo IO0 I.550 
0.667 X0 1.345 
0.43 60 I.13 

Y .ooo 180 2.577 
2.333 140 I.975 
0.479 60 I.142 
0.1 1 I 20 0.636 

Y.000 1800 4.727 
2.3 3 3 I400 3.588 
I .ooo 1000 ?.XO4 
0.4”) 600 2.060 
0. I I I 200 I.144 

(h) Umform heat Rux 

“, “II ci, 

2. I YY 70 
I.‘#3 60 
I.000 50 
0.662 40 
0.418 30 

7.195 140 
I .4x2 IX 
I .ooo 100 
0.66 I x0 
0.4 1 7 60 

2. I x0 700 
I .3x2 600 
I .ooo 500 
0.66 I 400 
0.3 I 7 300 

I.612 
I .4X0 
I.344 
I .x2 
1.048 

l.X6Y 
1.715 
1.556 
1.3Yl 
I.71 I 

2.611 
2.3Y3 
2. I70 
1.937 
I .6X6 

H, “11 Difference 

x14 3.5 
1.766 I .o 
I.550 0.0 
I.346 0.0 

I.141 I.1 

2.847 Y.5 
2.014 I .9 
I.141 0.0 
0.653 2.6 

5.063 0.6 
3.5X1 0.2 
2.755 I .X 
x30 I.5 
I.162 I.5 

I-I: “c1 Difkrcncc 

I .65X 2.8 
I.504 I.6 
1.356 0.x 
1 .x9 0.5 
I.055 0.7 

I .YO4 1.x 
1.727 0.; 
I.557 0.1 

1.3xX 0 2 

I.212 0.1 

2.626 0.5 

2.3X3 0.3 
2.14’) I .o 
I.915 I.1 
I.672 0.x 

*Similarity solutions results of Carey and Mollendorf [2l] 

which may be compared to the transformed ex- 
pression of the present analysis for the isothermal 

surface 

= [-&(O)](l-;‘T,2,‘2’\ 2’ (32) 

The corresponding relations for the uniform heat 
flux surface are 

(33) 

H&, = (NL/,),,;(G~.~;);'~ 

= [-C/~'(O,]'~[I --;,;;212 5 1(2)’ 5[$(0)]). (34) 

When comparing correlations. -4’(O) and $(O) are 
determined at the values of ml. and ;$ which 
correspond to I’, ;Y~) and 0,. using (29) and (30). 
Table 3 shows a comparison of H, with H,, and HT 
with H&, for the indicated values of ;$ and u,. The 

results of the perturbation analysis are seen to agree 
extremely well with the experimental correlations of 
Fujii or rrl. [22] for both the isothermal and uniform 

heat flux surface conditions. Also shown in Table 3 
for the isothermal surface are the similarity solution 

results of Carey and Mollendorf [31] for gI = 100 
and 1000. The similarity solution results are in 
slightly better agreement with those of Fujii c’t trl. 
[22] than those of the perturbation analysis for 
IyjI < 0.8. Even for values of i;lTI as large as 1.6 there 
is good agreement between the similarity solution 
and the correlation of Fujii ct trl. 1221. It is 
interesting to note that for I$ = 0.8 the percent 
change, compared to the constant viscosity results, 
(7; = 0). is as much as 25q,, for Hc, and H&,; while 
for N’, the deviation is limited to no more than 7”,,. 
This difference occurs because, for H,, and H&,, the 
reference viscosity is evaluated at t )- while for N’ it is 
evaluated at I,. This demonstrates how the choice of 
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_o;5py&- 
1.0 2.0 4.0 6.0 

'1 

0.8 

9 

0.6 

FIG. 4. For the plane plume with ol. = 100, the effect of 7; on +(p,$) and .f’(q,$) is shown for 
j$ = -0.4, 0, 0.4. Curves for yf = 0 correspond to f; and 4,,. Also shown are ,J’ (---) and 4, 

(----). The arrows indicate the direction of increasing ;‘;. 

0.080 0.8 

0 

f’ 0.6 

0.040 0.4 

0.2 

0 0 

-0.020 
0.5 1.0 1.5 2.0 4.0 6.0 

9 

FIG. 5. For the concentrated horizontal source on an adiabatic surface with o/ = 100. the effect of 7; on 
$(q,$) and f”(rl,;‘;) is shown for 7; = -0.4, 0. 0.4. Also shown are f; (---) and r$l (-----). The 

arrows indicate the direction of increasing ;‘:. 

reference temperature influences the predicted effect 
of variable viscosity on heat transfer. This forms the 
basis for the alternate method of correlating variable 
property effects on heat transfer used by Fujii et al. 
[22] in which all fluid properties are evaluated at 

t, = to-1/4(t,-t,). 
Figures 4 and 5 show the effect of 7; # 0 on the 

temperature and velocity profiles for the flow above 
a horizontal line thermal source and the flow above 
a horizontal line thermal source on a vertical 
adiabatic surface, respectively. Comparison of the 
similarity solution to the perturbation analysis for 
the isothermal surface indicates that the results are in 
close agreement for @I as large as 0.8. However, for 
the two adiabatic flows, the values of ,f; in the outer 
portion of the velocity boundary layer are so large 

that $ > 0.4 would predict local flow reversal [i.e. 
f’(~x)=f’b(~)+y~f;(~)<O]. Since this calls into 
question the validity of the boundary-layer 
approximations, the range of validity of the present 

first order perturbation results for the two adi- 

abatic flows is thought to be limited to I$ GO.4. 

In Figs. 4 and 5, f’ and 4 profiles are shown for 

cf = 100 and rf = -0.4, 0 and 0.4. The profiles for 
$ =0 correspond to ,f;, and &, and .f’, and (PI 
are also shown. 

It can be seen in Fig. 4 and Table I that for the 

plane plume, non-zero values of y; produce signi- 
ficant changes in the velocity and temperature at the 
centerline of the plume, even for values of Prandtl 
number as large as 100 and 500. For I$ = 0.4, there 
is about 2”/, change in ,f’(O) and 4(O) compared to 



the constant viscosity results, while the change in 
mass flow. I’( x ). is as much ah 14”,,. A\ pwiously 

mentioned, Spalding and Cruddacc [I?] concluded 

that the temperature dependence of viscosity has no 
influence on large Prandtl number tlows because I'OI 

large Prandtl number the rcpion of non-uniform 

temperature is thin and concentrated in ;I region of 
small shear. While their conclusion stems intuitively 
correct, the present analysis indicates that it is not 
applicable for (r,. < 500. Further. it can be seen in the 
profiles in Fig. 4 for gTI-= 100 that the effect 01 

temperature-dependent viscosit> is not confined to 
the thermal boundary layer region. The greatest 

alteration of the velocity profile occurs in the center 
of the velocity boundary layer. well out beyond the 
thermal boundary layer. Increasing ;,T products ;I 

decrease in centerline temperature of tbc plume 
which is opposite to the trend observed for the ilou 

above a horizontal line source on a \#crtical adiabatic 
surface. In this regard it is interesting to note the 

centerline temperature measurements for plane 

plumes reported by F‘Lljii, Morioka and tlehara L34]. 
Their Fig. 9 presents a plot d non-dimensional 
centerline temperature vs local Hux Grashof number 
and shows their own data for air. water and spindle 
oil as uell as the data for air of Brodouicr and 

Kierkus [39] and Forstrom and Sparrow [40] and 
the data for water and silicone tluid of Schorr and 

Gebhart [41]. The data of Forstrom and Sparrow 

[40] and Schorr and Gebhart [41] as well as the air 
data of Fujii c’t (I/. [34] alI fall about 1 S’,, Iowcr than 
the line predicted by the similarit! solution. Lyakhov 
[42] has shown that this systematic deviation is due 
to inaccurate treatment of the entrainment near the 
line thermal source. The centerline temperature data 
of Fujii er ctl. [34] for spindle oil and water. however. 

are on the line predicted by the similarity solution 
for local flux Grashof numbers around 10” and the 

data decrease with increasing Grashof number until 
they are I5 I’(, low at 10”. From the results of Lyakhol 
[42] all data should be about 15”,, Iow on this plot. 

Further. the data of Fujii (II (I/. [34] for spindle oil 
and water were taken at values of heat RLIX that are 
an order of magnitude larger than those of the other 

authors mentioned here. The high values of heat tlux 
will produce high centerline temperature differences. 
particularly near the source (low values of local FELIX 

Grashof number). Since both water and spindle oil 
have temperature dependent viscosity. the data 
points at smaller values of local flux Grashof number 
would correspond to large negative valises of ;$. 
From Table 1 it can be seen that negative values of 
;s; produce an increase in the centerline temperature 
of the plane plume. This suggests that the data 
points for spindle oil and water are high at low 
values of flux Grashof number because of the effect 
of temperature dependent viscosity. For water, the 
effect of variable /j must also be considered and 
therefore the viscosity variation is only one possible 
cause of the deviation. However. for oils tbc viscosity 
variation is dominant and the results of our analysis 

appear to explain the trend UAX III lllc spindle oil 

data of Fujii (‘I rrl. [34]. 
Finally. Fig. 5 hhowh the ell’ect of tcmpsraturc 

dependent viscosity on the tcmpcraturc and \elocitk 

profiles for the Row above a horirontal lint source 
on ;I vcrticaI adiabatic surface Mith CJ, = IOO. It can 
be seen that the effect of the viscosity variation is IIOL 

limited to the thermal boundary region. but affects 

the velocity profile well out beyond the thermal 
region. Compared to the constant propert) results. 
for I;$1 = 0.4. the respective differences in (/,((I). T* 

and 1 (x ) are as much as 6",,. S',, and Z”,,. The effect 
of ;‘,y and cI on the centerline temperature for the 
two adiabatic flows GIII be seen in Fip. 6. Increasing 

77 produces decreasing c/~O,;,y) for the pianc plume 
while the opposite trend is observed for the plane 
wall plume. Also shown in Fig. 6 is the effect of ;,T 

and 0, on the centerline velocity of the plane 

plume. For CJ, =5. increasing ;‘T actually produces ;I 

slight decrease in t ‘(0. :,T 1. while for g, 310. 
increasing ;,T produces ;I slight increase in / ‘(0. 77). 

For many liquids the variation of viscosity with 

temperature is much greater than the variation of 
other fluid properties. When this is true. the analysis 
presented here provides II more accurate picture of 

the thermal and momentum transport in the four 
flows considered than the usual analysis with 

constant properties. The truncated expansion for 11 
amounts to ;I linear variation of viscosity with 
temperature which is not exact for many fluids but is 

I 
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FIG. 6. The effect of Prandtl number on transport. d(O.$) 
for the adiabatic flows as a function of ;,T and on f’(0.y;) 
(lower curves) for the plane plume. For the upper curves 
i plane plume and ~ concentrated horizontal 
source on an adiabatic surface) and for the lower r”(O,;,T) 
curves. the arrows indicate increasing n, for CT, =5, IO. 

so, 100. 500. 
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a good approximation for the small values of 1/; 

required for the present perturbation analysis. 

Even for moderate values of y;, significant effects 

on thermal and momentum transport are found for 
all four flows considered here. The excellent agree- 
ment between the perturbation analysis results and 
the heat-transfer data and correlations of Fujii et ul. 

[22] for the isothermal and uniform heat flux surface 
conditions lends strong support to the calculated 
results. It further suggests that for these flows, the 
assumption of linear variation of viscosity with 
temperature is adequate to predict transport for 
many circumstances. The results of Fujii et al. [22] 
also agree well with the similarity solution of Carey 

and Mollendorf [31]. 
In light of the conclusions of Lyakhov [42], the 

computed results for the plane plume seem to 
explain the trends in the centerline temperature data 
of Fujii er crl. [34] for spindle oil at high values of 

source heat flux. While the present first-order 
analysis is only applicable to a limited range of ;I;, it 

provides considerable information about the effect of 

temperature dependent viscosity on these laminar 
natural convection flows. If needed, greater accuracy 
may be obtained with the present perturbation 
scheme by including higher-order terms in the 
expansions for viscosity, stream function and tem- 

perature excess ratio. 
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EFFETS DE LA VISCOSITE VARIABLE SUR LES ECOULEMENTS DE CONVECTlON 
NATURELLE 

RkumC Une analyse rbgulitre de perturbation est prksentie pour trois types de convection naturelle 
dam des liquides li viscositk variable avec la tempirature: un panache plan ascensionnel, I’tcoulement au 
dessus d’une source lineaire horizontale sur une surface adiabatique et l’boulement adjacent a une 
surface verticale chauffke ;i flux uniforme. Alors que ces Ccoulements ont des solutions de similaritk en loi 
puissance lorsque la viscositi est constante, cela n’est pas lorsque la viscositi est fonction de la 
temptrature. Un tcoulement i similarit&, celui adjacent a une surface verticale isotherme, est analyst pour 
comparaison de faGon ri estimer le domaine de validit& de I’analyse de perturbation. La formulation 
utilisPe ici fournit un traitement unifii des effets de la viscosite variable sur ces quatre tcoulements. A 
I’exception de I’eau. la variation principale des propri&s du fluide est relative i la viscositt absolue. Cela 
est connu et d&ja utilist pour d’autres tcoulements, cela constitue la base de la presente &ude. On 
prisente pour les quatre cas les calculs des perturbations au premier ordre. Plusieurs comportements 
interessants sent suggCr& pour I’tcoulement et le transfert. Ces modifications par rapport au cas de la 
viscosite constante sont significatives mime dans les limites de la perturbation de premier ordre. Les 
risultats pour le transfert thermique avec des surfaces i tempkrature ou i flux constants sont en bon 
accord avec les don&es et les formules anttrieures. Les rtsultats prksentts Cclairent quelques conclusions 

d&ja &non&es sur les tcoulements de panache. 

EINFLiiSSE VERANDERLICHER VlSKOSITb;T BE1 EINIGEN FREIEN 
KONVEKTIONSSTROMUNGEN 

Zusammenfassung Eine analytische Liisung mit normalem Starungsansatz wird fiir drei laminare freie 
Konvektionsstr6mungen in Fliissigkeiten mit temperaturabhingiger Viskositat beschrieben: eine frei 
aufsteigende, ebene Striimung, die Striimung oberhalb einer horizontalen Linienquelle auf einer adiabaten 
Oberflache (StrGmung Itings einer ebenen Wand) und die StrGmung nahe einer vertikalen OberflIche mit 
gleichf&migem Wirmestrom. Wahrend diese StrGmungen woh,lbekannte jihnlichkeitslijsungen nach 
Potenzgesetzen haben, wenn die Viskositlt des Fluids als konstant angenommen wird, sind diese nicht- 
ahnlich, wenn die Viskositit als Funktion der Temperatur betrachtet wird. Eine einzelne Bhnliche 
Strsmung, die nahe einer vertikalen isothermen OberflBche ist, wird zum Vergleich ebenfalls untersucht. 
urn den Giiltigkeitsbereich der LBsung durch StGrungsansatz abzuschtitzen. Die hier benutzten Formeln 
erlauben eine gemeinsame Behandluny des Einflusses vergnderlicher ViskositIt bei diesen vier Str6m- 
ungsformen. Von Wasser abgesehen, ist bei iiblichen Fliissigkeiten die Stoffeigenschaft mit der griil3ten 
TemperaturabhCngigkeit die dynamische ViskositPt. Dies wurde schon friiher erkannt und bei der 
Behandlung anderer Str6mungen genutzt und ist die Grundlage der Anwendbarkeit der vorliegenden 
Llisung. Berechnete Glieder erster Ordnung des StGrungsansatzes werden fiir alle vier StrGmungen 
angegeben. Mehrere interessante Auswirkungen variabler Zghigkeit auf Striimung und Transportei- 
genschaften werden durch die vorliegenden Ergebnisse aufgezeigt. Diese Abweichungen von einer Liisung 
ftir konstante Zlhigkeit erweisen sich sogar innerhalb des notwendigerweise begrenzten Giiltlgkeits- 
bereichs einer LGsung durch StGrungsansatz erster Ordnung als wesentlich. Die Ergebnisse fiir den 
WBrmeiibergang bei isothermen OberflBchen und bei solchen mit konstantem Warmestrom befinden sich 
in sehr guter iibereinstimmung mit den entsprechenden Daten und Korrelationen vorausgegangener 
Untersuchungen. Die vorliegenden Ergebnisse stellen einige vorausgegangene Schliisse be.&!lich 

Auftriebsstromungen in einen klareren Zusammenhang. 
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BflMIlHME nEPEMEHHOti BII3KOCTM HA HEKOTOPblE TMnbl 
CBOGOAHOKOHBEKTMBHbIX TE4EHMti 

AHHOTaUHG MeToitoMB03MyueHW~aHa.IW3WpytOTctt TPW TWna ~aMWHapHblXCBO60,IHOKOHBeK~WaHbIX 

Te'teHWiiBTWJKOCTRX.BI13KOCTb KOTOpblX3aBWCWTOTTeMllepaTypbl:CBO60L1HO BCn.lblBatOLUaR n.?OCKaR 

CTpyR. BOCXOD.t2luWfi nOTOK Han rOpW?OHTd"bttblM .lWHetiHbIM WCTO'tHWKOM OK070 a.lWa6aTW'AeCKOfi 

nosepxHocTW (npWcTetwatt nnoCKafl c-rpya) W rereHWe Bo3.le BepTWKanbHofi 0~1~0p02H0 ttarpeBaeMoB 

nOBepXHOCTW. XOTZ4 ,lJtt4 3TWX TeqeHWi? WMetOTCII W3BeCTHble CTeneHHble aBTOMO,lc.lbHblC peL"ettWSt ttpW 

nOCTORHHOti aR3KOCTW. OJHaKO aBTOMO.le;lbHOCTb WCSe3aeT. eC.'IW B13KOCTb pdCCMarpWBacrCR KaK 

$yHKlIWtt TeMrtepaTypbt. E3WHCTBeHHblti TWl,Te~eHWH.J1,, KOTOpOrO COXpaHficTCR aB~O\,O.'Ie.tbttOC~b 

TeYeHWe BOJ:le aeprWKa.'tbHOti W30TepMWYeCKOii ,tOBepXHOCTW. BK;ltOVeH B aHa.tW3 C Lle.lbtO OLICHKW 

CTeneHW npWMeHWMOCTW MeTOLla BO3.MyLUeHWti. MCnO:lbSyeMblfi B pa6O-re IIO~XO;l OriecncVWBaC-r BOi- 

MOmHOCTh eJWHOr0 CnOCO6a yq?Td BnWflHWtt t,epeMeHHOfi aI(3KOCTW Ha yKa3aHHble TWltbt IeqeHWR. 

!'iMeHHO BR3KOCTb W3 BCeX CBOt?CTB 06bl'lHblX mWJKOCret? (38 WCK:ltO'teHWe~ BOlbl) HaWdO.lee cW:lbHO 

3aBWctmoT rewtepd~ypbt.3~0~06~enpW3HaHttbti~~aK~ Wcno:tb30aa:wt npW 0nWCatiWW;IpyrWx reqettWii 

W 6bI;l nOJtOxteH B OCHOay HaCTORtUeTO aHaJtW3a. PdCCqWTaHHble BeltH'tWHbt B IlepBOM ttOptL',Kc 110 

803Myuet*Wto npe;ic-ras;leHbl 2-7~ Bcex paccMarpesaeMbIx TWnoB IeqettWtt. nonyretibl tteKo*ophte 

wHTepecHble BblBolbl 0 BJ~WF~HWW nepeMet+Hoi? ~113~omW ~a TeqeHHe W nepettoc terl.la. K0~0pbte ttpe;l- 

CTBBIIRtoTCII CyueCrBeHHblMWllaYeC y+TOM OrpdHW'teHHOCTW npWMcHWMOCTA pC'tyJbTdTOt3. ,,O.lyYC& 

HblX B nepBOM nOpSti,KC n0 B03MyUeHWK). Pe3yJtbTalbInO TeLlOOfiMeHy LlJH M30TepMWqeCKOii IlOBepX- 

HOCTW H nOBepXHOCTW C nOCTORHHblM TettJtOBblM nOTOKOM HaXO,!lRTCIl B XOpOIUeM COl.ldCWW C CO- 

OTBc'FC~BytOLUWMW ,laHHblMW tt&,CJbIily"iWX WCC.!lc,'lOBaHt,i?. nOJyqeHHblc pe,y:lbrdrbl raKi(iC y10'1t1HtOI 

ttCKOrOpble FdHcc Cil‘UaHHblc BblBOLlbl 0THOCWTC:thHO nOlLb&4HhlX Tc'tcHWii. 


